Hamada coordinates: Difference between revisions

From FusionWiki
Jump to navigation Jump to search
No edit summary
Line 1: Line 1:
Hamada coordinates are a set of [[Flux coordinates#Magnetic coordinates|magnetic coordinates]] in which the equilibrium current density <math>\mathbf{j}</math> lines are straight besides those of magnetic field <math>\mathbf{B}</math>. The periodic part of the [[Flux coordinates#Magnetic field representation in flux coordinates|stream functions]] of both <math>\mathbf{B}</math> and  <math>\mathbf{j}</math> are flux functions (that can be chosen to be zero without loss of generality).
=[http://aluxyxenud.co.cc Under Construction! Please Visit Reserve Page. Page Will Be Available Shortly]=
Hamada coordinates are a set of [[Flux coordinates#Magnetic coordinates|magnetic coordinates]] in which the equilibrium current density &lt;math&gt;\mathbf{j}&lt;/math&gt; lines are straight besides those of magnetic field &lt;math&gt;\mathbf{B}&lt;/math&gt;. The periodic part of the [[Flux coordinates#Magnetic field representation in flux coordinates|stream functions]] of both &lt;math&gt;\mathbf{B}&lt;/math&gt; and  &lt;math&gt;\mathbf{j}&lt;/math&gt; are flux functions (that can be chosen to be zero without loss of generality).


== Form of the Jacobian for Hamada coordinates ==
== Form of the Jacobian for Hamada coordinates ==
In this section, following D'haseleer et al we will translate the condition of straight current density lines into one for the '''Hamada''' coordinates Jacobian. For that we will make use of the equilibrium equation <math>\mathbf{j}\times\mathbf{B} = p'\nabla\psi </math>, which written in a magnetic coordinate system reads
In this section, following D'haseleer et al we will translate the condition of straight current density lines into one for the '''Hamada''' coordinates Jacobian. For that we will make use of the equilibrium equation &lt;math&gt;\mathbf{j}\times\mathbf{B} = p'\nabla\psi &lt;/math&gt;, which written in a magnetic coordinate system reads
:<math>
:&lt;math&gt;
\frac{-I'_{tor}\Psi'_{pol} + I'_{pol}\Psi'_{tor}}{4\pi^2\sqrt{g_f}}
\frac{-I'_{tor}\Psi'_{pol} + I'_{pol}\Psi'_{tor}}{4\pi^2\sqrt{g_f}}
- \mathbf{B}\cdot\nabla\tilde{\eta} = p'~.
- \mathbf{B}\cdot\nabla\tilde{\eta} = p'~.
</math>
&lt;/math&gt;
Taking the [[Flux coordinates#flux surface average|flux surface average]] <math>\langle\cdot\rangle</math> of this equation we find <math>(-{I}'_{tor}{\Psi}'_{pol} + {I}'_{pol}{\Psi}'_{tor})= 4\pi^2{p}'\langle(\sqrt{g_f})^{-1}\rangle^{-1}</math>, so that we have
Taking the [[Flux coordinates#flux surface average|flux surface average]] &lt;math&gt;\langle\cdot\rangle&lt;/math&gt; of this equation we find &lt;math&gt;(-{I}'_{tor}{\Psi}'_{pol} + {I}'_{pol}{\Psi}'_{tor})= 4\pi^2{p}'\langle(\sqrt{g_f})^{-1}\rangle^{-1}&lt;/math&gt;, so that we have
:<math> \mathbf{B}\cdot\nabla\tilde{\eta} = {p}'\left(\frac{\langle(\sqrt{g_f})^{-1}\rangle^{-1}}{\sqrt{g_f}}-1\right)
:&lt;math&gt; \mathbf{B}\cdot\nabla\tilde{\eta} = {p}'\left(\frac{\langle(\sqrt{g_f})^{-1}\rangle^{-1}}{\sqrt{g_f}}-1\right)
</math>
&lt;/math&gt;


In a coordinate system where <math>\mathbf{j}</math> is straight <math>\tilde{\eta}</math> is a function of <math>\psi</math> only, and therefore LHS of this equation must be zero in such a system. It therefore follows that the Jacobian of the '''Hamada''' system must satisfy  
In a coordinate system where &lt;math&gt;\mathbf{j}&lt;/math&gt; is straight &lt;math&gt;\tilde{\eta}&lt;/math&gt; is a function of &lt;math&gt;\psi&lt;/math&gt; only, and therefore LHS of this equation must be zero in such a system. It therefore follows that the Jacobian of the '''Hamada''' system must satisfy  
:<math>
:&lt;math&gt;
  \sqrt{g_H} = \langle\sqrt{g_H}^{-1}\rangle^{-1} = \frac{V'}{4\pi^2}~,
  \sqrt{g_H} = \langle\sqrt{g_H}^{-1}\rangle^{-1} = \frac{V'}{4\pi^2}~,
</math>
&lt;/math&gt;
where the last identity follows from the [[Flux coordinates#Useful properties of the FSA|properties of the flux surface average]]. The Hamada angles are sometimes defined in 'turns' (i.e. <math>(\theta, \xi) \in [0,1)</math>) instead of radians (<math>(\theta, \xi) \in [0,2\pi)</math>)). This choice together with the choice of the volume <math>V</math> as radial coordinate makes the Jacobian equal to unity. Alternatively one can select <math>\psi = \frac{V}{4\pi^2}</math> as radial coordinate with the same effect.
where the last identity follows from the [[Flux coordinates#Useful properties of the FSA|properties of the flux surface average]]. The Hamada angles are sometimes defined in 'turns' (i.e. &lt;math&gt;(\theta, \xi) \in [0,1)&lt;/math&gt;) instead of radians (&lt;math&gt;(\theta, \xi) \in [0,2\pi)&lt;/math&gt;)). This choice together with the choice of the volume &lt;math&gt;V&lt;/math&gt; as radial coordinate makes the Jacobian equal to unity. Alternatively one can select &lt;math&gt;\psi = \frac{V}{4\pi^2}&lt;/math&gt; as radial coordinate with the same effect.


== Magnetic field and current density expressions in a Hamada vector basis ==
== Magnetic field and current density expressions in a Hamada vector basis ==
With the form of the Hamada coordinates' Jacobian we can now write the explicit [[Flux coordinates#Contravariant Form|contravariant form]] of the magnetic field in terms of the '''Hamada''' basis vectors
With the form of the Hamada coordinates' Jacobian we can now write the explicit [[Flux coordinates#Contravariant Form|contravariant form]] of the magnetic field in terms of the '''Hamada''' basis vectors
:<math>
:&lt;math&gt;
  \mathbf{B} = 2\pi\Psi_{pol}'(V)\mathbf{e}_\theta + 2\pi\Psi_{tor}'(V)\mathbf{e}_\phi~.
  \mathbf{B} = 2\pi\Psi_{pol}'(V)\mathbf{e}_\theta + 2\pi\Psi_{tor}'(V)\mathbf{e}_\phi~.
</math>
&lt;/math&gt;
This has the nice property of having flux constant contravariant coefficients (functions of the radial coordinate only). The current density contravariant looks alike
This has the nice property of having flux constant contravariant coefficients (functions of the radial coordinate only). The current density contravariant looks alike
:<math>
:&lt;math&gt;
  \mu_0\mathbf{j} = 2\pi I_{pol}'(V)\mathbf{e}_\theta + 2\pi I_{tor}'(V)\mathbf{e}_\phi~.
  \mu_0\mathbf{j} = 2\pi I_{pol}'(V)\mathbf{e}_\theta + 2\pi I_{tor}'(V)\mathbf{e}_\phi~.
</math>
&lt;/math&gt;


The [[Flux coordinates#Convariant Form |covariant expression]] of the magnetic field is less clean
The [[Flux coordinates#Convariant Form |covariant expression]] of the magnetic field is less clean
:<math>
:&lt;math&gt;
\mathbf{B} =  \frac{I_{tor}}{2\pi}\nabla\theta + \frac{I_{pol}^d}{2\pi}\nabla\phi + \nabla\tilde\chi~.
\mathbf{B} =  \frac{I_{tor}}{2\pi}\nabla\theta + \frac{I_{pol}^d}{2\pi}\nabla\phi + \nabla\tilde\chi~.
</math>
&lt;/math&gt;
with contributions from the periodic part of the magnetic scalar potential <math>\tilde\chi</math> to all the covariant components. Nonetheless, the '''flux surface averaged Hamada covariant <math>B</math>-field angular components''' have simple expressions, i.e
with contributions from the periodic part of the magnetic scalar potential &lt;math&gt;\tilde\chi&lt;/math&gt; to all the covariant components. Nonetheless, the '''flux surface averaged Hamada covariant &lt;math&gt;B&lt;/math&gt;-field angular components''' have simple expressions, i.e
:<math>
:&lt;math&gt;
\langle B_\theta\rangle = \langle\mathbf{B}\cdot\mathbf{e}_\theta\rangle = \left\langle \frac{I_{tor}}{2\pi} + \frac{\partial \tilde\chi}{\partial \theta}\right\rangle = \frac{I_{tor}}{2\pi} + (V')^{-1}\int\partial_\theta\tilde\chi \sqrt{g} d\theta d\phi = \frac{I_{tor}}{2\pi}
\langle B_\theta\rangle = \langle\mathbf{B}\cdot\mathbf{e}_\theta\rangle = \left\langle \frac{I_{tor}}{2\pi} + \frac{\partial \tilde\chi}{\partial \theta}\right\rangle = \frac{I_{tor}}{2\pi} + (V')^{-1}\int\partial_\theta\tilde\chi \sqrt{g} d\theta d\phi = \frac{I_{tor}}{2\pi}
</math>
&lt;/math&gt;
where the integral over <math>\theta</math> is zero because the Jacobian in Hamada coordinates is not a function of this angle. Similarly
where the integral over &lt;math&gt;\theta&lt;/math&gt; is zero because the Jacobian in Hamada coordinates is not a function of this angle. Similarly
:<math>
:&lt;math&gt;
\langle B_\phi\rangle = \langle\mathbf{B}\cdot\mathbf{e}_\phi\rangle = \frac{I^d_{pol}}{2\pi}~.
\langle B_\phi\rangle = \langle\mathbf{B}\cdot\mathbf{e}_\phi\rangle = \frac{I^d_{pol}}{2\pi}~.
</math>
&lt;/math&gt;

Revision as of 08:28, 24 November 2010

Under Construction! Please Visit Reserve Page. Page Will Be Available Shortly

Hamada coordinates are a set of magnetic coordinates in which the equilibrium current density <math>\mathbf{j}</math> lines are straight besides those of magnetic field <math>\mathbf{B}</math>. The periodic part of the stream functions of both <math>\mathbf{B}</math> and <math>\mathbf{j}</math> are flux functions (that can be chosen to be zero without loss of generality).

Form of the Jacobian for Hamada coordinates

In this section, following D'haseleer et al we will translate the condition of straight current density lines into one for the Hamada coordinates Jacobian. For that we will make use of the equilibrium equation <math>\mathbf{j}\times\mathbf{B} = p'\nabla\psi </math>, which written in a magnetic coordinate system reads

<math>

\frac{-I'_{tor}\Psi'_{pol} + I'_{pol}\Psi'_{tor}}{4\pi^2\sqrt{g_f}} - \mathbf{B}\cdot\nabla\tilde{\eta} = p'~. </math> Taking the flux surface average <math>\langle\cdot\rangle</math> of this equation we find <math>(-{I}'_{tor}{\Psi}'_{pol} + {I}'_{pol}{\Psi}'_{tor})= 4\pi^2{p}'\langle(\sqrt{g_f})^{-1}\rangle^{-1}</math>, so that we have

<math> \mathbf{B}\cdot\nabla\tilde{\eta} = {p}'\left(\frac{\langle(\sqrt{g_f})^{-1}\rangle^{-1}}{\sqrt{g_f}}-1\right)

</math>

In a coordinate system where <math>\mathbf{j}</math> is straight <math>\tilde{\eta}</math> is a function of <math>\psi</math> only, and therefore LHS of this equation must be zero in such a system. It therefore follows that the Jacobian of the Hamada system must satisfy

<math>
\sqrt{g_H} = \langle\sqrt{g_H}^{-1}\rangle^{-1} = \frac{V'}{4\pi^2}~,

</math> where the last identity follows from the properties of the flux surface average. The Hamada angles are sometimes defined in 'turns' (i.e. <math>(\theta, \xi) \in [0,1)</math>) instead of radians (<math>(\theta, \xi) \in [0,2\pi)</math>)). This choice together with the choice of the volume <math>V</math> as radial coordinate makes the Jacobian equal to unity. Alternatively one can select <math>\psi = \frac{V}{4\pi^2}</math> as radial coordinate with the same effect.

Magnetic field and current density expressions in a Hamada vector basis

With the form of the Hamada coordinates' Jacobian we can now write the explicit contravariant form of the magnetic field in terms of the Hamada basis vectors

<math>
\mathbf{B} = 2\pi\Psi_{pol}'(V)\mathbf{e}_\theta + 2\pi\Psi_{tor}'(V)\mathbf{e}_\phi~.

</math> This has the nice property of having flux constant contravariant coefficients (functions of the radial coordinate only). The current density contravariant looks alike

<math>
\mu_0\mathbf{j} = 2\pi I_{pol}'(V)\mathbf{e}_\theta + 2\pi I_{tor}'(V)\mathbf{e}_\phi~.

</math>

The covariant expression of the magnetic field is less clean

<math>

\mathbf{B} = \frac{I_{tor}}{2\pi}\nabla\theta + \frac{I_{pol}^d}{2\pi}\nabla\phi + \nabla\tilde\chi~. </math> with contributions from the periodic part of the magnetic scalar potential <math>\tilde\chi</math> to all the covariant components. Nonetheless, the flux surface averaged Hamada covariant <math>B</math>-field angular components have simple expressions, i.e

<math>

\langle B_\theta\rangle = \langle\mathbf{B}\cdot\mathbf{e}_\theta\rangle = \left\langle \frac{I_{tor}}{2\pi} + \frac{\partial \tilde\chi}{\partial \theta}\right\rangle = \frac{I_{tor}}{2\pi} + (V')^{-1}\int\partial_\theta\tilde\chi \sqrt{g} d\theta d\phi = \frac{I_{tor}}{2\pi} </math> where the integral over <math>\theta</math> is zero because the Jacobian in Hamada coordinates is not a function of this angle. Similarly

<math>

\langle B_\phi\rangle = \langle\mathbf{B}\cdot\mathbf{e}_\phi\rangle = \frac{I^d_{pol}}{2\pi}~. </math>