H-mode: Difference between revisions

From FusionWiki
Jump to navigation Jump to search
Line 14: Line 14:
The details of this mechanism are the subject of ongoing studies.
The details of this mechanism are the subject of ongoing studies.
<ref>[http://link.aip.org/link/?PHPAEN/16/012504/1 M.A. Malkov and P.H. Diamond, ''Weak hysteresis in a simplified model of the L-H transition'', Phys. Plasmas '''16''' (2009) 012504]</ref>
<ref>[http://link.aip.org/link/?PHPAEN/16/012504/1 M.A. Malkov and P.H. Diamond, ''Weak hysteresis in a simplified model of the L-H transition'', Phys. Plasmas '''16''' (2009) 012504]</ref>
The mechanism is probably related to the mechanism for forming an [[Internal Transport Barrier]].


== ELMs ==
== ELMs ==

Revision as of 13:03, 27 August 2009

When a magnetically confined plasma is heated strongly and a threshold heating power level is exceeded, it may spontaneously transition from a low confinement (or L-mode) state to a high confinement (or H-mode) state. [1] In the H-mode, the energy confinement time is significantly enhanced, i.e., typically by a factor of 2 or more. [2]

Physical mechanism

This transport bifurcation is the consequence of the suppression of turbulence in the edge plasma, induced by a sheared flow layer and an associated edge radial electric field. The local suppression of turbulence leads to a reduction of transport and a steepening of the edge profiles. [3] The sheared flow is generated by the turbulence itself via the Reynolds Stress mechanism. [4] Thus, the H-mode is the consequence of a self-organizing process in the plasma. The details of this mechanism are the subject of ongoing studies. [5] The mechanism is probably related to the mechanism for forming an Internal Transport Barrier.

ELMs

The steep edge gradients (of density and temperature) lead to quasi-periodic violent relaxation phenomena, known as Edge Localized Modes (ELMs), which have a strong impact on the surrounding vessel. [6] Although Quiescent H-modes exist (without ELMs), [7] they are generally considered not convenient due to the accumulation of impurities. To achieve steady state, an ELMy H-mode is preferred and this mode of operation is proposed as the standard operating scenario for ITER, thus converting ELM mitigation into a priority. [8]

References