Greenwald limit: Difference between revisions

From FusionWiki
Jump to navigation Jump to search
mNo edit summary
No edit summary
Line 1: Line 1:
The Greenwald is an operational limit for the density in magnetic confinement devices:
The Greenwald limit is an operational limit for the density in magnetic confinement devices:
<ref>[http://dx.doi.org/10.1088/0741-3335/44/8/201 M. Greenwald, ''Density limits in toroidal plasmas'', Plasma Phys. Control. Fusion '''44''' (2002) R27-R53]</ref>
<ref>[http://dx.doi.org/10.1088/0741-3335/44/8/201 M. Greenwald, ''Density limits in toroidal plasmas'', Plasma Phys. Control. Fusion '''44''' (2002) R27-R53]</ref>



Revision as of 07:52, 7 September 2009

The Greenwald limit is an operational limit for the density in magnetic confinement devices: [1]

where nG is the density in 1020 m-3, Ip the plasma current in MA, and a the minor radius in m.

In tokamaks (and RFPs), exceeding the Greenwald limit typically leads to a disruption, although sometimes the limit can be crossed without deleterious effects (especially with peaked density profiles). Stellarators can typically exceed the Greenwald limit by factors of 2 to 5, or more (replacing Ip by an equivalent current corresponding to the magnetic field).

The mechanism behind this phenomenological limit is not understood, but probably associated with edge gradient limits.

References