Biorthogonal decomposition: Difference between revisions

From FusionWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 16: Line 16:
The combination chrono/topo at a given ''k'', &psi;<sub>k</sub>(i) &phi;<sub>k</sub>(j),  
The combination chrono/topo at a given ''k'', &psi;<sub>k</sub>(i) &phi;<sub>k</sub>(j),  
is called a spatio-temporal 'mode' of the fluctuating system, and is constructed from the data matrix without any prejudice regarding the mode shape.
is called a spatio-temporal 'mode' of the fluctuating system, and is constructed from the data matrix without any prejudice regarding the mode shape.
The &lambda;<sub>k</sub> are the eigenvalues (sorted in decreasing order), where ''k=1,...,min(N,M)''.
The &lambda;<sub>k</sub> are the eigenvalues (sorted in decreasing order), where ''k=1,...,min(N,M)'', and directly represent the square root of the fluctuation energy contained in the corresponding mode.
This decomposition is achieved using a standard [[:Wikipedia:Singular value decomposition|Singular value decomposition]] of the data matrix ''Y(i,j)''.
This decomposition is achieved using a standard [[:Wikipedia:Singular value decomposition|Singular value decomposition]] of the data matrix ''Y(i,j)''.
Thus, the oscillations of the spatiotemporal fluctuating field are represented by means of a very small number of spatio-temporal modes that are constructed from the data themselves, without prejudice regarding the mode shape.
Thus, the oscillations of the spatiotemporal fluctuating field are represented by means of a very small number of spatio-temporal modes that are constructed from the data themselves, without prejudice regarding the mode shape.

Revision as of 16:02, 9 February 2010

The Biorthogonal Decomposition (BOD, also known as Proper Orthogonal Decomposition, POD) applies to the analysis of multipoint measurements

where i=1,...,N is a temporal index and j=1,...,M a spatial index (typically). The time traces Y(i,j) for fixed j are usually sampled at a fixed rate; however the measurement locations x(j) need not be ordered in any specific way.

The BOD decomposes the data matrix as follows:

where ψk is a 'chrono' (a temporal function) and φk a 'topo' (a spatial or detector-dependent function), such that the chronos and topos satisfy the following orthogonality relation

The combination chrono/topo at a given k, ψk(i) φk(j), is called a spatio-temporal 'mode' of the fluctuating system, and is constructed from the data matrix without any prejudice regarding the mode shape. The λk are the eigenvalues (sorted in decreasing order), where k=1,...,min(N,M), and directly represent the square root of the fluctuation energy contained in the corresponding mode. This decomposition is achieved using a standard Singular value decomposition of the data matrix Y(i,j). Thus, the oscillations of the spatiotemporal fluctuating field are represented by means of a very small number of spatio-temporal modes that are constructed from the data themselves, without prejudice regarding the mode shape. [1]

A limitation of the technique is that it assumes space-time separability. This is not always the most appropriate assumption: e.g., travelling waves have a structure such as cos(kx-ωt); however, most propagating waves can still be recognised clearly by their distinct footprint in the biorthogonal modes (provided there are not too many): a travelling wave will produce a pair of modes with similar amplitude and a 90° phase difference.

See also

References