TJ-II:Confinement transitions

From FusionWiki
Revision as of 11:56, 8 August 2009 by Admin (talk | contribs) (Created page with 'Strongly driven fusion-grade plasmas often develop spontaneous (radial) narrow zones with steep gradients. This spontaneous local improvement of confinement is of fundamental imp…')
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Strongly driven fusion-grade plasmas often develop spontaneous (radial) narrow zones with steep gradients. This spontaneous local improvement of confinement is of fundamental importance for the operation of fusion plasmas. In fact, the important H-mode depends on it.

While this phenomenon is still not completely understood, much progress has been made in recent years. It is believed that turbulent fluctuations drive sheared or zonal flows via the Reynolds Stress Mechanism. This flow then shears the turbulent eddies apart, leading to local turbulence suppression at specific radial locations, and a concomitant local reduction of transport.

At TJ-II, much effort has been invested in the experimental measurement and theoretical understanding of this phenomenon. [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

References

  1. P.H. Diamond et al, In search of the elusive zonal flow using cross-bicoherence analysis, Phys. Rev. Lett. 84, 12 (2000) 4842
  2. C. Hidalgo et al, Experimental Investigation of Dynamical Coupling between Turbulent Transport and Parallel Flows in the JET Plasma-Boundary Region, Phys. Rev. Lett. 91 (2003) 065001
  3. C. Hidalgo et al., Experimental evidence of coupling between sheared-flow development and an increase in the level of turbulence in the TJ-II stellarator, Phys. Rev. E 70 (2004) 067402
  4. M.A. Pedrosa et al., Threshold for sheared flow and turbulence development in the TJ-II stellarator, Plasma Phys. Control. Fusion 47 (2005) 777-788
  5. E. Sánchez et al., On the energy transfer between flows and turbulence in the plasma boundary of fusion devices, J. of Nuclear Materials 337 (2005) 296
  6. B.A. Carreras et al, Critical transition for the edge shear layer formation: Comparison of model and experiment, Phys. Plasmas 13 (2006) 122509
  7. B. Gonçalves et al., Role of Turbulence on Edge Momentum Redistribution in the TJ-II Stellarator, Phys. Rev. Lett. 96 (2006) 145001
  8. B.Ph. van Milligen et al, Bicoherence during confinement transitions in the TJ-II stellarator, Nucl. Fusion 48 (2008) 115003
  9. M.A. Pedrosa et al, Evidence of Long-Distance Correlation of Fluctuations during Edge Transitions to Improved-Confinement Regimes in the TJ-II Stellarator, Phys. Rev. Lett. 100 (2008) 215003
  10. I. Calvo et al, Zonal flows and long-distance correlations during the formation of the edge shear layer in the TJ-II stellarator, Plasma Phys. Control. Fusion 51 (2009) 065007