H-mode
When a magnetically confined plasma is heated strongly and a threshold heating power level is exceeded, it may spontaneously transition from a low confinement (or L-mode) state to a high confinement (or H-mode) state. [1] In the H-mode, the energy confinement time is significantly enhanced, i.e., typically by a factor of 2 or more. [2]
Physical mechanism
This transport bifurcation is the consequence of the suppression of turbulence in the edge plasma, induced by a sheared flow layer and an associated edge radial electric field. [3] The sheared flow is generated by the turbulence itself via the Reynolds Stress mechanism. Thus, the H-mode is the consequence of a self-organizing process in the plasma. [4] The details of this mechanism are the subject of ongoing studies.
ELMs
The steep edge gradients (of density and temperature) lead to quasi-periodic violent relaxation phenomena, known as Edge Localized Modes (ELMs), which have a strong impact on the surrounding vessel. [5] Although Quiescent H-modes exist (without ELMs), they are considered not convenient due to the accumulation of impurities. To achieve steady state, an ELMy H-mode is preferred and this mode of operation is proposed as the standard operating scenario for ITER, thus converting ELM mitigation into a priority. [6]
References
- ↑ F. Wagner et al, Development of an Edge Transport Barrier at the H-Mode Transition of ASDEX, Phys. Rev. Lett. 53 (1984) 1453 - 1456
- ↑ M. Keilhacker, H-mode confinement in tokamaks, Plasma Phys. Control. Fusion 29 (1987) 1401-1413
- ↑ F. Wagner, A quarter-century of H-mode studies, Plasma Phys. Control. Fusion 49 (2007) B1-B33
- ↑ H. Sugama et al, L-H confinement mode dynamics in three-dimensional state space, Plasma Phys. Control. Fusion 37 (1995) 345-362
- ↑ D.N. Hill, A review of ELMs in divertor tokamaks, Journal of Nuclear Materials 241-243 (1997) 182-198
- ↑ M.R. Wade, Physics and engineering issues associated with edge localized mode control in ITER, Fusion Engineering and Design 84, Issues 2-6 (2009) 178-185