Toroidal coordinates: Difference between revisions

No edit summary
Line 32: Line 32:
* adding [[ellipticity]] (<math>\kappa</math>), [[triangularity]] (<math>\delta</math>), and squareness (<math>\zeta</math>) to account for non-circular flux surface cross sections. A popular simple expression for shaped flux surfaces is: <ref> R.L. Miller, M.S. Chu, J.M. Greene, Y.R. Lin-Liu and R.E. Waltz, ''Noncircular, finite aspect ratio, local equilibrium model'', [[doi:10.1063/1.872666|Phys. Plasmas '''5''' (1998) 973]]</ref>
* adding [[ellipticity]] (<math>\kappa</math>), [[triangularity]] (<math>\delta</math>), and squareness (<math>\zeta</math>) to account for non-circular flux surface cross sections. A popular simple expression for shaped flux surfaces is: <ref> R.L. Miller, M.S. Chu, J.M. Greene, Y.R. Lin-Liu and R.E. Waltz, ''Noncircular, finite aspect ratio, local equilibrium model'', [[doi:10.1063/1.872666|Phys. Plasmas '''5''' (1998) 973]]</ref>


:<math>R(r,\theta) = R_0(r) + r \cos(\theta + \arcsin \delta \sin \theta)\\
:<math>R(r,\theta) = R_0(r) + r \cos(\theta + \arcsin \delta \sin \theta)</math>
Z(r,\theta) = Z_0(r) + \kappa(r) r \sin(\theta + \zeta \sin 2 \theta) </math>
:<math>Z(r,\theta) = Z_0(r) + \kappa(r) r \sin(\theta + \zeta \sin 2 \theta) </math>


== Toroidal coordinates ==
== Toroidal coordinates ==