4,427
edits
Line 39: | Line 39: | ||
The main performance parameter that is subjected to scaling law analysis is the [[Energy confinement time|energy confinement time]], τ<sub>E</sub>. | The main performance parameter that is subjected to scaling law analysis is the [[Energy confinement time|energy confinement time]], τ<sub>E</sub>. | ||
The | The energy confinement time is expressed in engineering variables: | ||
:<math>\tau_E = C I^{\alpha_I} B^{\alpha_B} \overline{n}^{\alpha_n} P^{\alpha_P} R^{\alpha_R} \kappa^{\alpha_\kappa} \epsilon^{\alpha_\epsilon} S_{cr}^{\alpha_S} M^{\alpha_M}</math> | |||
:<math>\tau_E | |||
where | where | ||
* I (MA) is the plasma current | |||
* B (T) is the toroidal magnetic field | |||
* <math>\overline{n}</math> (10<sup>19</sup> m<sup>-3</sup>) is the central line averaged density | |||
* P (MW) is the absorbed power | |||
* R (m) is the major radius | |||
* κ is the elongation | |||
* ε is the inverse aspect ratio | |||
* S<sub>cr</sub> is the cross sectional area | |||
* M is the hydrogen isotope mass | |||
For | The following tables shows some of the most generally used sets of scaling parameters for the ELMy [[H-mode]] and L-mode. | ||
<ref name="ITER">ITER Physics Expert Groups et al, ''ITER Physics Basis, Chapter 1'', [[doi:10.1088/0029-5515/39/12/301|Nucl. Fusion '''39''' (1999) 2137]] and | |||
[[doi:10.1088/0029-5515/39/12/302|Ibid., ''Chapter 2'']]</ref> | |||
<ref>J.G. Cordey, J.A. Snipes, M. Greenwald, et al., IAEA 20th Fusion Energy Conference, Vilamoura, Portugal, 2004, paper IAEA-CN-116/IT/P3-32, submitted to Nucl. Fusion.</ref> | |||
<ref>P.N. Yushmanov, T. Takizuka, K.S. Riedel, et al., [[doi:10.1088/0029-5515/30/10/001|Nucl. Fusion 30 (1990) 1999]]</ref> | |||
<ref>S.M. Kaye, et al., [[doi:10.1088/0029-5515/37/9/I10|Nucl. Fusion 37 (1997) 1303]]</ref> | |||
{| class="wikitable sortable" border="1" cellpadding="4" cellspacing="0" | |||
|+ | |||
|- style="background:#FFDEAD;" | |||
!Scaling | |||
!<math>C\times10^3</math> | |||
!<math>\alpha_I</math> | |||
!<math>\alpha_B</math> | |||
!<math>\alpha_n</math> | |||
!<math>\alpha_P</math> | |||
!<math>\alpha_R</math> | |||
!<math>\alpha_\kappa</math> | |||
!<math>\alpha_\epsilon</math> | |||
!<math>\alpha_S</math> | |||
!<math>\alpha_M</math> | |||
|- | |||
|ITERH-98P(y,2) | |||
|56.2 | |||
|0.93 | |||
|0.15 | |||
|0.41 | |||
| -0.69 | |||
|1.97 | |||
|0.78 | |||
|0.58 | |||
| - | |||
|0.19 | |||
|- | |||
|ITPAH-04P(y,1) | |||
|22.8 | |||
|0.86 | |||
|0.21 | |||
|0.40 | |||
| -0.65 | |||
|0.32 | |||
| - | |||
| -0.99 | |||
|0.84 | |||
|0.08 | |||
|- | |||
|ITPAH-04P(y,2) | |||
|19.8 | |||
|0.85 | |||
|0.17 | |||
|0.26 | |||
| -0.45 | |||
| -0.04 | |||
| - | |||
| -1.25 | |||
|0.82 | |||
|0.11 | |||
|- | |||
|ITPAH-04P(y,3) | |||
|88.0 | |||
|0.90 | |||
| - | |||
|0.30 | |||
| -0.47 | |||
|1.73 | |||
| - | |||
|0.43 | |||
| - | |||
| - | |||
|- | |||
|ITER-89P | |||
|48 | |||
|0.85 | |||
|0.20 | |||
|0.10 | |||
| -0.50 | |||
|1.50 | |||
|0.50 | |||
|0.30 | |||
| - | |||
|0.50 | |||
|- | |||
|ITERL-96P(th) | |||
|23 | |||
|0.96 | |||
|0.03 | |||
|0.40 | |||
| -0.73 | |||
|1.83 | |||
|0.64 | |||
| -0.06 | |||
| - | |||
|0.20 | |||
|- | |||
|} | |||
For [[stellarator]]s, a similar scaling has been obtained (ISS). | |||
<ref>[http://www.ipp.mpg.de/ISS ISS-IPP] and [http://iscdb.nifs.ac.jp/ ISS-NIFS] homepages</ref> | <ref>[http://www.ipp.mpg.de/ISS ISS-IPP] and [http://iscdb.nifs.ac.jp/ ISS-NIFS] homepages</ref> | ||
<ref>[http://dx.doi.org/10.1088/0029-5515/47/9/025 A. Dinklage et al, ''Physical model assessment of the energy confinement time scaling in stellarators'', Nuclear Fusion '''47''', 9 (2007) 1265-1273]</ref> | <ref>[http://dx.doi.org/10.1088/0029-5515/47/9/025 A. Dinklage et al, ''Physical model assessment of the energy confinement time scaling in stellarators'', Nuclear Fusion '''47''', 9 (2007) 1265-1273]</ref> |