Boozer coordinates: Difference between revisions

no edit summary
No edit summary
Line 18: Line 18:
:<math>
:<math>
\sqrt{g_B} = \frac{V'}{4\pi^2}\frac{\langle B^2\rangle} {B^2}
\sqrt{g_B} = \frac{V'}{4\pi^2}\frac{\langle B^2\rangle} {B^2}
</math>
== Covariant representation of the magnetic field in Boozer coordinates ==
Using this Jacobian in the general form of the magnetic field in [[Flux coordinates # Magnetic coordinates|magnetic coordinates]] one gets.
:<math>
\mathbf{B} = 2\pi\frac{d\Psi_{pol}}{dV}\frac{B^2}{\langle B^2\rangle}\mathbf{e}_\theta +
2\pi\frac{d\Psi_{tor}}{dV}\frac{B^2}{\langle B^2\rangle}\mathbf{e}_\phi
</math>
</math>


== Contravariant representation of the magnetic field in Boozer coordinates ==
== Contravariant representation of the magnetic field in Boozer coordinates ==
In Boozer coordinates the angular covariant <math>B</math>-field components are flux functions
The contravariant representation of the field is also relatively simple when using Boozer coordinates, since the angular covariant <math>B</math>-field components are flux functions in these coordinates
:<math>
:<math>
\mathbf{B} =  -\tilde\eta\nabla\psi + \frac{I_{tor}}{2\pi}\nabla\theta + \frac{I_{pol}^d}{2\pi}\nabla\phi~.
\mathbf{B} =  -\tilde\eta\nabla\psi + \frac{I_{tor}}{2\pi}\nabla\theta + \frac{I_{pol}^d}{2\pi}\nabla\phi~.
204

edits