Rotational transform: Difference between revisions

no edit summary
No edit summary
Line 5: Line 5:
<ref>[http://link.aps.org/doi/10.1103/RevModPhys.76.1071 A.H. Boozer, ''Physics of magnetically confined plasmas'', Rev. Mod. Phys. '''76''' (2004) 1071]</ref>
<ref>[http://link.aps.org/doi/10.1103/RevModPhys.76.1071 A.H. Boozer, ''Physics of magnetically confined plasmas'', Rev. Mod. Phys. '''76''' (2004) 1071]</ref>


:<math>\frac{\iota}{2 \pi} = \frac{d \psi}{d \phi}</math>
:<math>\frac{\iota}{2 \pi} = \frac{d \psi}{d \Phi}</math>


where ''&psi;'' is the poloidal magnetic flux, and ''&phi;'' the toroidal magnetic flux.
where ''&psi;'' is the poloidal magnetic flux, and &Phi; the toroidal magnetic flux.


== Safety factor ==
== Safety factor ==
Line 16: Line 16:
<ref>K. Miyamoto, ''Plasma Physics and Controlled Nuclear Fusion'', Springer-Verlag (2005) ISBN 3540242171</ref>
<ref>K. Miyamoto, ''Plasma Physics and Controlled Nuclear Fusion'', Springer-Verlag (2005) ISBN 3540242171</ref>


:<math>\frac{r d\theta}{B_\theta} = \frac{Rd\varphi}{B_\phi}</math>
:<math>\frac{r d\theta}{B_\theta} = \frac{Rd\varphi}{B_\varphi}</math>


where ''&varphi;'' and ''&theta;'' are the [[Toroidal coordinates|toroidal and poloidal angles]], respectively.  
where <math>\phi</math> and ''&theta;'' are the [[Toroidal coordinates|toroidal and poloidal angles]], respectively.  
Thus ''q = m/n = <d&varphi;/d&theta;>'' can be approximated by
Thus <math>q = m/n = \left \langle d\varphi /d\theta \right \rangle </math> can be approximated by


:<math>q \simeq \frac{r B_\varphi}{R B_\theta}</math>
:<math>q \simeq \frac{r B_\varphi}{R B_\theta}</math>