Toroidal coordinates: Difference between revisions

Line 184: Line 184:
:<math>
:<math>
\nu(\psi,\theta,\phi)  
\nu(\psi,\theta,\phi)  
= \frac{1}{2\pi}(\dot{\Psi}_{tor}\theta
= \frac{1}{2\pi}(\Psi}_{tor}'\theta
- \dot{\Psi}_{pol}\phi)  
- {\Psi}_{pol}'\phi)  
+ \tilde{\nu}(\psi,\theta,\phi)
+ \tilde{\nu}(\psi,\theta,\phi)
</math>
</math>
Line 235: Line 235:
By very similar arguments as those used for <math>\mathbf{B}</math> (note that both <math>\mathbf{B}</math> and <math>\mathbf{j}</math> are solenoidal fields tangent to the flux surfaces) it can be shown that the general expression for <math>\eta</math> is
By very similar arguments as those used for <math>\mathbf{B}</math> (note that both <math>\mathbf{B}</math> and <math>\mathbf{j}</math> are solenoidal fields tangent to the flux surfaces) it can be shown that the general expression for <math>\eta</math> is
:<math>
:<math>
\eta(\psi,\theta,\phi) = \frac{1}{2\pi}(\dot{I}_{tor}\theta
\eta(\psi,\theta,\phi) = \frac{1}{2\pi}({I}_{tor'}\theta
- \dot{I}_{pol}\phi)  
- {I}_{pol}'\phi)  
+ \tilde{\eta}(\psi,\theta,\phi)~.
+ \tilde{\eta}(\psi,\theta,\phi)~.
</math>
</math>
204

edits