Toroidal coordinates: Difference between revisions

Line 156: Line 156:


=== Magnetic field representation in flux coordinates ===
=== Magnetic field representation in flux coordinates ===
The choice of a system of flux coordinates allows to express the (nested flux-surfaces forming) magnetic field <math>\mathbf{B}</math> as
Any magnetic field <math>\mathbf{B}</math>  can be written as
:<math>
<math> \mathbf{B} = \nabla\alpha\times\nabla\nu </math>
\mathbf{B} = \nabla\psi\times\nabla\nu
called its Clebsch representation. For a magnetic field with flux surfaces <math>(\psi = \mathrm{const}\; , \; \nabla\psi\cdot\mathbf{B} = 0)</math> we can choose, say, <math>\alpha</math> to be the flux surface label <math>\psi</math>
</math>
:<math>  
called the Clebsch representation. It is also an expression of <math>\mathbf{B}</math> in terms of the covariant basis vectors
\mathbf{B} = \nabla\psi\times\nabla\nu  
</math>  
Field lines are then given as the intersection of the constant-<math>\psi</math> and constant-<math>\nu</math> surfaces. This form provides a general expression for <math>\mathbf{B}</math> in terms of the covariant basis vectors of a flux coordinate system
:<math>
:<math>
\mathbf{B} = \frac{\partial\nu}{\partial\theta}\nabla\psi\times\nabla\theta + \frac{\partial\nu}{\partial\phi}\nabla\psi\times\nabla\phi =  \frac{1}{\sqrt{g}}\frac{\partial\nu}{\partial\theta}\mathbf{e}_\phi -\frac{1}{\sqrt{g}}\frac{\partial\nu}{\partial\phi}\mathbf{e}_\theta = B^\phi\mathbf{e}_\phi + B^\theta\mathbf{e}_\theta~.
\mathbf{B} = \frac{\partial\nu}{\partial\theta}\nabla\psi\times\nabla\theta + \frac{\partial\nu}{\partial\phi}\nabla\psi\times\nabla\phi =  \frac{1}{\sqrt{g}}\frac{\partial\nu}{\partial\theta}\mathbf{e}_\phi -\frac{1}{\sqrt{g}}\frac{\partial\nu}{\partial\phi}\mathbf{e}_\theta = B^\phi\mathbf{e}_\phi + B^\theta\mathbf{e}_\theta~.
</math>
</math>
 
in terms of the function <math>\nu</math>, sometimes referred to as the magnetic field's ''stream function''.
Field lines are then given as the intersection of the constant-<math>\psi</math> and constant-<math>\nu</math> surfaces. The function <math>\nu</math> is sometimes referred to as the magnetic field's ''stream function''.


== Magnetic ==
== Magnetic ==
204

edits