Neoclassical transport: Difference between revisions

m
Line 8: Line 8:
The theory starts from the (Markovian) Fokker-Planck Equation for the particle distribution function <math>f_\alpha(x,v,t)</math>:
The theory starts from the (Markovian) Fokker-Planck Equation for the particle distribution function <math>f_\alpha(x,v,t)</math>:


<math>
:<math>
\frac{\partial f_\alpha}{\partial t} + v\cdot \nabla f_\alpha + F \frac{\partial f_\alpha}{\partial v} = C_\alpha(f)
\frac{\partial f_\alpha}{\partial t} + v\cdot \nabla f_\alpha + F \frac{\partial f_\alpha}{\partial v} = C_\alpha(f)
</math>
</math>
Line 21: Line 21:
Once the collision operator is decided, the moments of the Fokker-Planck equation can be computed:
Once the collision operator is decided, the moments of the Fokker-Planck equation can be computed:


<math>
:<math>
n u = \int{v f d^3v}  
n u = \int{v f d^3v}  
</math>
</math>
Line 27: Line 27:
(particle flux)
(particle flux)


<math>
:<math>
P = \int{m v \cdot v f d^3v}
P = \int{m v \cdot v f d^3v}
</math>
</math>
Line 33: Line 33:
(stress tensor)
(stress tensor)


<math>
:<math>
Q = \int{\frac{m v^2}{2} v f d^3v}
Q = \int{\frac{m v^2}{2} v f d^3v}
</math>
</math>