4,427
edits
Line 22: | Line 22: | ||
* Enhanced collisionless losses of trapped particles, generating a radial electric field <ref>[http://link.aps.org/doi/10.1103/PhysRevLett.86.5910 U. Stroth et al, ''Internal Transport Barrier Triggered by Neoclassical Transport in W7-AS'', Phys. Rev. Lett. '''86''' (2001) 5910 - 5913]</ref> | * Enhanced collisionless losses of trapped particles, generating a radial electric field <ref>[http://link.aps.org/doi/10.1103/PhysRevLett.86.5910 U. Stroth et al, ''Internal Transport Barrier Triggered by Neoclassical Transport in W7-AS'', Phys. Rev. Lett. '''86''' (2001) 5910 - 5913]</ref> | ||
* Reduced collisional damping, allowing the growth of zonal flows <ref>[http://link.aip.org/link/?PHPAEN/14/020702/1 K. Itoh et al, ''Physics of internal transport barrier of toroidal helical plasmas'', Phys. Plasmas '''14''' (2007) 020702]</ref> | * Reduced collisional damping, allowing the growth of zonal flows <ref>[http://link.aip.org/link/?PHPAEN/14/020702/1 K. Itoh et al, ''Physics of internal transport barrier of toroidal helical plasmas'', Phys. Plasmas '''14''' (2007) 020702]</ref> | ||
The relation between some of these factors can be understood from the steady state ion force balance for the radial electric field: | |||
:<math>E_r = \frac{1}{Zen_e}\nabla p_i -v_\theta B_\phi + v_\phi B_\theta</math> | |||
Thus, gradients in any of the quantities appearing in this equation may lead to sheared ''E'' × ''B'' flows. | |||
== References == | == References == | ||
<references /> | <references /> |