Toroidal coordinates

Coordinate systems used in toroidal systems:

A simple toroidal coordinate system

Cartesian coordinates

(X, Y, Z) [1]

Cylindrical coordinates

(R, φ, Z), where [2]

  • R2 = X2 + Y2, and
  • tan φ = Y/X.

φ is called the toroidal angle (and not the cylindrical angle, at least not in the context of magnetic confinement).

Cylindrical symmetry (symmetry under rotation over φ) is referred to as axisymmetry.

Simple toroidal coordinates

(r, φ, θ), where

  • R = R0 + r cos θ, and
  • Z = r sin θ

R0 corresponds to the torus axis and is called the major radius, while r is called the minor radius, and θ the poloidal angle.

In order to adapt this simple system better to the magnetic surfaces of an axisymmetric MHD equilibrium, it may be enhanced by [3]

  • letting R0 depend on r (to account for the Shafranov shift of flux surfaces) [4]
  • adding ellipticity (ε), triangularity (κ), etc. (to account for non-circular flux surface cross sections)

Toroidal coordinates

(ζ, η, φ), where [5] [6]

 
 

where Rp is the pole of the coordinate system. Surfaces of constant ζ are tori with major radii R = Rp/tanh ζ and minor radii r = Rp/sinh ζ. At R = Rp, ζ = ∞, while at infinity and at R = 0, ζ = 0. The coordinate η is a poloidal angle and runs from 0 to 2π. This system is orthogonal.

The Laplace equation separates in this system of coordinates, thus allowing an expansion of the vacuum magnetic field in toroidal harmonics. [7] [8]

General curvilinear coordinates

Here we briefly review the basic definitions of a general curvilinear coordinate system for later convenience when discussing toroidal flux coordinates and magnetic coordinates.

Function coordinates and basis vector

Given the spatial dependence of a coordinate set   we can calculate the contravariant basis vectors

 

and the dual covariant basis defined as

 

where   are cyclic permutations of   and we have used the notation  . The Jacobian   is defined below.

Any vector field   can be represented as

 

or

 

In particular any basis vector  . The metric tensor is defined as

 

Jacobian

The Jacobian of the coordinate transformation   is defined as

 

and that of the inverse transformation

 

It can be seen that [9]  

Flux coordinates

A flux coordinate set is one that includes a flux surface label as a coordinate. A flux surface label is a function that is constant and single valued on each flux surface. In our naming of the general curvilinear coordinates we have already adopted the usual flux coordinate convention for toroidal equilibrium with nested flux surfaces with   being the flux surface label and   are  -periodic poloidal and toroidal-like angles.

Different flux surface labels can be chosen like toroidal   or poloidal   magnetic fluxes or the volume contained within the flux surface  . By single valued we mean to ensure that any flux label   is a monotonous function of any other flux label  , so that the function   is invertible at least in a volume containing the region of interest. We will denote a generic flux surface label by  .

Flux Surface Average

The flux surface average of a function   is defined as the limit

 

where   is the volume confined between two flux surfaces. It is therefore a volume average over an infinitesimal spatial region rather than a surface average. To avoid confusion, we denote volume elements or domains with the calligraphic  . Capital   is reserved for the flux label (coordinate) defined as the volume within a flux surface.

Introducing the differential volume element  

 

or, noting that  , we have   and we get to a more practical form of the Flux Surface Average

 

Note that  , so the FSA is a surface integral weighted by   :

 

Applying Gauss' theorem to the definition of FSA we get to the identity

 

Useful properties of FSA

Some useful properties of the FSA are

  •  
  •  
  •  
  •  
  •  
  •  

where  .

Magnetic field representation in flux coordinates

Contravariant From

Any solenoidal vector field   can be written as   called its Clebsch representation. For a magnetic field with flux surfaces   we can choose, say,   to be the flux surface label  

 

Field lines are then given as the intersection of the constant-  and constant-  surfaces. This form provides a general expression for   in terms of the covariant basis vectors of a flux coordinate system

 

in terms of the function  , sometimes referred to as the magnetic field's stream function.

It is worthwhile to note that the Clebsch form of   corresponds to a magnetic vector potential   (or   as they differ only by the Gauge transformation  ).

The general form of the stream function is

 

where   is a differentiable function periodic in the two angles. This general form can be derived by using the fact that   is a physical function (hence singe-valued). The specific form for the coefficients in front of the secular terms (i.e. the non-periodic terms) can be obtained from the FSA properties .

Covariant Form

If we consider an equilibrium magnetic field such that  , where   is the current density , then both   and   and the magnetic field can be written as

 

where   is identified as the magnetic scalar potential. Its general form is

 
 
Sample integration circuits for the current definitions.
 
Sample surface for the definition of the current though a disc. Note that only the current of more external surfaces contribute to the flux of charge through the surface.

The functional dependence on the angular variables is again motivated by the single-valuedness of the magnetic field. The particular form of the coefficients can be obtained noting that

 

and choosing an integration circuit contained within a flux surface  . Then we get

 

If we now chose a toroidal circuit   we get

 

here the superscript   is meant to indicate the flux is computed through a disc limited by the integration line, as opposed to the ribbon limited by the integration line on one side and the magnetic axis on the other that was used for the definition of poloidal magnetic flux   above these lines. Similarly

 
Contravariant Form of the current density

Taking the curl of the covariant form of   the equilibrium current density   can be written as

 

By very similar arguments as those used for   (note that both   and   are solenoidal fields tangent to the flux surfaces) it can be shown that the general expression for   is

 

Note that the poloidal current is now defined through a ribbon and not a disc.

Magnetic coordinates

Magnetic coordinates are a particular type of flux coordinates in which the magnetic field lines are straight lines. In mathematical terms this implies that the periodic part of the magnetic field's stream function is zero in these coordinates so the magnetic field reads

 

Magnetic coordinates adapt to the magnetic field, and therefore to the MHD equilibrium (also see Flux surface). Magnetic coordinates simplify the description of the magnetic field. In 3 dimensions (not assuming axisymmetry), the most commonly used coordinate systems are: [9]

  • Hamada coordinates. [10][11] In these coordinates, both the field lines and current lines corresponding to the MHD equilibrium are straight. Referring to the definitions above, both   and   are zero in Hamada coordinates.
  • Boozer coordinates. [12][13] In these coordinates, the field lines corresponding to the MHD equilibrium are straight and so are the diamagnetic lines , i.e. the integral lines of  . Referring to the definitions above, both   and   are zero in Boozer coordinates.

These two coordinate systems are related. [14]

References

  1. Wikipedia:Cartesian coordinate system
  2. Wikipedia:Cylindrical coordinate system
  3. R.L. Miller et al, Noncircular, finite aspect ratio, local equilibrium model, Phys. Plasmas 5 (1998) 973
  4. R.D. Hazeltine, J.D. Meiss, Plasma confinement, Courier Dover Publications (2003) ISBN 0486432424
  5. Morse and Feshbach, Methods of theoretical physics, McGraw-Hill, New York, 1953 ISBN 007043316X
  6. Wikipedia:Toroidal coordinates
  7. F. Alladio, F. Chrisanti, Analysis of MHD equilibria by toroidal multipolar expansions, Nucl. Fusion 26 (1986) 1143
  8. B.Ph. van Milligen and A. Lopez Fraguas, Expansion of vacuum magnetic fields in toroidal harmonics, Computer Physics Communications 81, Issues 1-2 (1994) 74-90
  9. 9.0 9.1 W.D. D'haeseleer, Flux coordinates and magnetic field structure: a guide to a fundamental tool of plasma theory, Springer series in computational physics, Springer-Verlag (1991) ISBN 3540524193
  10. S. Hamada, Nucl. Fusion 2 (1962) 23
  11. J.M. Greene and J.L Johnson, Stability Criterion for Arbitrary Hydromagnetic Equilibria, Phys. Fluids 5 (1962) 510
  12. A.H. Boozer, Plasma equilibrium with rational magnetic surfaces, Phys. Fluids 24 (1981) 1999
  13. A.H. Boozer, Establishment of magnetic coordinates for a given magnetic field, Phys. Fluids 25 (1982) 520
  14. K. Miyamoto, Controlled fusion and plasma physics, Vol. 21 of Series in Plasma Physics, CRC Press (2007) ISBN 1584887095