Bayesian data analysis: Difference between revisions

From FusionWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
=[http://yjucofi.co.cc This Page Is Currently Under Construction And Will Be Available Shortly, Please Visit Reserve Copy Page]=
The goal of [[:Wikipedia:Bayesian inference|Bayesian]]
The goal of [[:Wikipedia:Bayesian inference|Bayesian]]
<ref>D.S. Sivia, ''Data Analysis: A Bayesian Tutorial'', Oxford University Press, USA (1996) ISBN 0198518897</ref>
&lt;ref&gt;D.S. Sivia, ''Data Analysis: A Bayesian Tutorial'', Oxford University Press, USA (1996) ISBN 0198518897&lt;/ref&gt;
<ref>P. Gregory, ''Bayesian Logical Data Analysis for the Physical Sciences'', Cambridge University Press, Cambridge (2005) ISBN 052184150X</ref>
&lt;ref&gt;P. Gregory, ''Bayesian Logical Data Analysis for the Physical Sciences'', Cambridge University Press, Cambridge (2005) ISBN 052184150X&lt;/ref&gt;
or integrated data analysis (IDA) is to combine the information from a set of diagnostics providing complementary information in order to recover the best possible reconstruction of the actual state of the system subjected to measurement.
or integrated data analysis (IDA) is to combine the information from a set of diagnostics providing complementary information in order to recover the best possible reconstruction of the actual state of the system subjected to measurement.
<ref>[http://dx.doi.org/10.1088/0741-3335/44/8/306 R. Fischer, C. Wendland, A. Dinklage, et al, '' Thomson scattering analysis with the Bayesian probability theory'', Plasma Phys. Control. Fusion '''44''' (2002) 1501]</ref>
&lt;ref&gt;[http://dx.doi.org/10.1088/0741-3335/44/8/306 R. Fischer, C. Wendland, A. Dinklage, et al, '' Thomson scattering analysis with the Bayesian probability theory'', Plasma Phys. Control. Fusion '''44''' (2002) 1501]&lt;/ref&gt;
<ref>[http://dx.doi.org/10.1088/0741-3335/45/7/304 R. Fischer, A. Dinklage, and E. Pasch, ''Bayesian modelling of fusion diagnostics'', Plasma Phys. Control. Fusion '''45''' (2003) 1095-1111]</ref>
&lt;ref&gt;[http://dx.doi.org/10.1088/0741-3335/45/7/304 R. Fischer, A. Dinklage, and E. Pasch, ''Bayesian modelling of fusion diagnostics'', Plasma Phys. Control. Fusion '''45''' (2003) 1095-1111]&lt;/ref&gt;
<ref>[http://link.aip.org/link/?RSINAK/75/4237/1 R. Fischer, A. Dinklage, ''Integrated data analysis of fusion diagnostics by means of the Bayesian probability theory'', Rev. Sci. Instrum. '''75''' (2004) 4237]</ref>
&lt;ref&gt;[http://link.aip.org/link/?RSINAK/75/4237/1 R. Fischer, A. Dinklage, ''Integrated data analysis of fusion diagnostics by means of the Bayesian probability theory'', Rev. Sci. Instrum. '''75''' (2004) 4237]&lt;/ref&gt;
<ref>[http://www.new.ans.org/pubs/journals/fst/a_575 A. Dinklage, R. Fischer, and J. Svensson, ''Topics and Methods for Data Validation by Means of Bayesian Probability Theory'', Fusion Sci. Technol. '''46''' (2004) 355]</ref>
&lt;ref&gt;[http://www.new.ans.org/pubs/journals/fst/a_575 A. Dinklage, R. Fischer, and J. Svensson, ''Topics and Methods for Data Validation by Means of Bayesian Probability Theory'', Fusion Sci. Technol. '''46''' (2004) 355]&lt;/ref&gt;
<ref>[http://dx.doi.org/10.1109/WISP.2007.4447579 J. Svensson, A. Werner, ''Large Scale Bayesian Data Analysis for Nuclear Fusion Experiments'', IEEE International Symposium on Intelligent Signal Processing (2007) 1]</ref>
&lt;ref&gt;[http://dx.doi.org/10.1109/WISP.2007.4447579 J. Svensson, A. Werner, ''Large Scale Bayesian Data Analysis for Nuclear Fusion Experiments'', IEEE International Symposium on Intelligent Signal Processing (2007) 1]&lt;/ref&gt;
<ref>[http://www.new.ans.org/pubs/journals/fst/a_10892 R. Fischer, C.J. Fuchs, B. Kurzan, et al., ''Integrated Data Analysis of Profile Diagnostics at ASDEX Upgrade'', Fusion Sci. Technol. '''58''' (2010) 675]</ref>
&lt;ref&gt;[http://www.new.ans.org/pubs/journals/fst/a_10892 R. Fischer, C.J. Fuchs, B. Kurzan, et al., ''Integrated Data Analysis of Profile Diagnostics at ASDEX Upgrade'', Fusion Sci. Technol. '''58''' (2010) 675]&lt;/ref&gt;
Like [[Function parametrization]] (FP), this technique requires having a ''forward model'' to predict the measurement readings for any given state of the physical system; however   
Like [[Function parametrization]] (FP), this technique requires having a ''forward model'' to predict the measurement readings for any given state of the physical system; however   
* instead of computing an estimate of the inverse of the forward model (as with FP), IDA finds the best model state corresponding to a specific measurement by a maximization procedure (maximization of the likelihood);
* instead of computing an estimate of the inverse of the forward model (as with FP), IDA finds the best model state corresponding to a specific measurement by a maximization procedure (maximization of the likelihood);
Line 19: Line 20:


== References ==
== References ==
<references />
&lt;references /&gt;

Revision as of 07:26, 24 November 2010

This Page Is Currently Under Construction And Will Be Available Shortly, Please Visit Reserve Copy Page

The goal of Bayesian <ref>D.S. Sivia, Data Analysis: A Bayesian Tutorial, Oxford University Press, USA (1996) ISBN 0198518897</ref> <ref>P. Gregory, Bayesian Logical Data Analysis for the Physical Sciences, Cambridge University Press, Cambridge (2005) ISBN 052184150X</ref> or integrated data analysis (IDA) is to combine the information from a set of diagnostics providing complementary information in order to recover the best possible reconstruction of the actual state of the system subjected to measurement. <ref>R. Fischer, C. Wendland, A. Dinklage, et al, Thomson scattering analysis with the Bayesian probability theory, Plasma Phys. Control. Fusion 44 (2002) 1501</ref> <ref>R. Fischer, A. Dinklage, and E. Pasch, Bayesian modelling of fusion diagnostics, Plasma Phys. Control. Fusion 45 (2003) 1095-1111</ref> <ref>R. Fischer, A. Dinklage, Integrated data analysis of fusion diagnostics by means of the Bayesian probability theory, Rev. Sci. Instrum. 75 (2004) 4237</ref> <ref>A. Dinklage, R. Fischer, and J. Svensson, Topics and Methods for Data Validation by Means of Bayesian Probability Theory, Fusion Sci. Technol. 46 (2004) 355</ref> <ref>J. Svensson, A. Werner, Large Scale Bayesian Data Analysis for Nuclear Fusion Experiments, IEEE International Symposium on Intelligent Signal Processing (2007) 1</ref> <ref>R. Fischer, C.J. Fuchs, B. Kurzan, et al., Integrated Data Analysis of Profile Diagnostics at ASDEX Upgrade, Fusion Sci. Technol. 58 (2010) 675</ref> Like Function parametrization (FP), this technique requires having a forward model to predict the measurement readings for any given state of the physical system; however

  • instead of computing an estimate of the inverse of the forward model (as with FP), IDA finds the best model state corresponding to a specific measurement by a maximization procedure (maximization of the likelihood);
  • the handling of error propagation is more sophisticated within IDA, allowing non-Gaussian error distributions and absolutely general parameter interdependencies; and
  • additionally, it provides a systematic way to include prior knowledge into the analysis.

See also

References

<references />