Hamada coordinates: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
Hamada coordinates are a set of [[Flux coordinates#Magnetic coordinates|magnetic coordinates]] in which the equilibrium current density <math>\mathbf{j}</math> lines are straight besides those of magnetic field <math>\mathbf{B}</math>. The periodic part of the stream functions of both <math>\mathbf{B}</math> and <math>\mathbf{j}</math> are flux functions (that can be chosen to be zero without loss of generality). | Hamada coordinates are a set of [[Flux coordinates#Magnetic coordinates|magnetic coordinates]] in which the equilibrium current density <math>\mathbf{j}</math> lines are straight besides those of magnetic field <math>\mathbf{B}</math>. The periodic part of the [[Flux coordinates # Magnetic field representation in flux coordinates|stream functions]] of both <math>\mathbf{B}</math> and <math>\mathbf{j}</math> are flux functions (that can be chosen to be zero without loss of generality). | ||
== Form of the Jacobian for Hamada coordinates == | == Form of the Jacobian for Hamada coordinates == |
Revision as of 11:05, 2 September 2010
Hamada coordinates are a set of magnetic coordinates in which the equilibrium current density lines are straight besides those of magnetic field Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{B}} . The periodic part of the stream functions of both Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{B}} and are flux functions (that can be chosen to be zero without loss of generality).
Form of the Jacobian for Hamada coordinates
In this section, following D'haseleer et al we will translate the condition of straight current density lines into one for the Hamada coordinates Jacobian. For that we will make use of the equilibrium equation Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{j}\times\mathbf{B} = p'\nabla\psi } , which written in a magnetic coordinate system reads
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{-I'_{tor}\Psi'_{pol} + I'_{pol}\Psi'_{tor}}{4\pi^2\sqrt{g_f}} - \mathbf{B}\cdot\nabla\tilde{\eta} = p'~. }
Taking the flux surface average Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle\cdot\rangle} of this equation we find Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-\dot{I}_{tor}{\Psi}'_{pol} + {I}'_{pol}{\Psi}'_{tor})= 4\pi^2{p}'\langle(\sqrt{g_f})^{-1}\rangle^{-1}} , so that we have
In a coordinate system where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{j}} is straight Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde{\eta}} is a function of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi} only, and therefore LHS of this equation must be zero in such a system. It therefore follows that the Jacobian of the Hamada system must satisfy
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{g_H} = \langle\sqrt{g_H}^{-1}\rangle^{-1} = \frac{V'}{4\pi^2}~, }
where the last idenity follows from the properties of the flux surface average. The Hamada angles are sometimes defined in 'turns' (i.e. ) instead of radians (Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\theta, \xi) \in [0,2\pi)} )). This choice together with the choice of the volume Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V} as radial coordinate makes the Jacobian equal to unity. Alternatively one can select Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi = \frac{V}{4\pi^2}} as radial coordinate with the same effect.
Magnetic field and current density expressions in Hamada vector basis
With the form of the Hamada coordinates' Jacobian we can now write the explicit contravariant form of the magnetic field in terms of the Hamada basis vectors
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{B} = 2\pi\Psi_{pol}'(V)\mathbf{e}_\theta + 2\pi\Psi_{tor}'(V)\mathbf{e}_\phi~. }
This has the nice property of having flux constant contravariant coefficients (functions of the radial coordinate only). The current density contravariant looks alike
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu_0\mathbf{j} = 2\pi I_{pol}'(V)\mathbf{e}_\theta + 2\pi I_{tor}'(V)\mathbf{e}_\phi~. }
The covariant expression of the magnetic field is less clean
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{B} = \frac{I_{tor}}{2\pi}\nabla\theta + \frac{I_{pol}^d}{2\pi}\nabla\phi + \nabla\tilde\chi~. }
with contributions from the periodic part of the magnetic scalar potential Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde\chi} to all the covariant components. Nonetheless, the flux surface averaged Hamada covariant Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B} -field angular components have simple expressions, i.e
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle B_\theta\rangle = \langle\mathbf{B}\cdot\mathbf{e}_\theta\rangle = \left\langle \frac{I_{tor}}{2\pi} + \frac{\partial \tilde\chi}{\partial \theta}\right\rangle = \frac{I_{tor}}{2\pi} + (V')^{-1}\int\partial_\theta\tilde\chi \sqrt{g} d\theta d\phi = \frac{I_{tor}}{2\pi} }
where the integral over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta} is zero because the Jacobian in Hamada coordinates is not a function of this angle. Similarly