Hamada coordinates: Difference between revisions
No edit summary |
|||
Line 1: | Line 1: | ||
Hamada coordinates are a set of [[Flux coordinates#Magnetic coordinates|magnetic coordinates]] in which the equilibrium current density <math>\mathbf{j}</math> lines are straight besides | Hamada coordinates are a set of [[Flux coordinates#Magnetic coordinates|magnetic coordinates]] in which the equilibrium current density <math>\mathbf{j}</math> lines are straight besides those of magnetic field <math>\mathbf{B}</math>. The periodic part of the stream functions of both <math>\mathbf{B}</math> and <math>\mathbf{j}</math> are flux functions (that can be chosen to be zero without loss of generality). | ||
== Form of the Jacobian for Hamada coordinates == | == Form of the Jacobian for Hamada coordinates == | ||
In this section, following D'haseleer et al we will translate the condition of straight current density lines into one for the Hamada coordinates Jacobian. For that we will make use of the equilibrium equation <math>\mathbf{j}\times\mathbf{B} = p'\nabla\psi </math>, which written in a magnetic coordinate system reads | In this section, following D'haseleer et al we will translate the condition of straight current density lines into one for the '''Hamada''' coordinates Jacobian. For that we will make use of the equilibrium equation <math>\mathbf{j}\times\mathbf{B} = p'\nabla\psi </math>, which written in a magnetic coordinate system reads | ||
:<math> | :<math> | ||
\frac{-I'_{tor}\Psi'_{pol} + I'_{pol}\Psi'_{tor}}{4\pi^2\sqrt{g_f}} | \frac{-I'_{tor}\Psi'_{pol} + I'_{pol}\Psi'_{tor}}{4\pi^2\sqrt{g_f}} | ||
Line 12: | Line 12: | ||
</math> | </math> | ||
In a coordinate system where <math>\mathbf{j}</math> is straight <math>\tilde{\eta}</math> is a function of <math>\psi</math> only, and therefore LHS of this equation must be zero in such a system. It therefore follows that the Jacobian of the Hamada system must satisfy | In a coordinate system where <math>\mathbf{j}</math> is straight <math>\tilde{\eta}</math> is a function of <math>\psi</math> only, and therefore LHS of this equation must be zero in such a system. It therefore follows that the Jacobian of the '''Hamada''' system must satisfy | ||
:<math> | :<math> | ||
\sqrt{g_H} = \langle\sqrt{g_H}^{-1}\rangle^{-1} = \frac{V'}{4\pi^2}~, | \sqrt{g_H} = \langle\sqrt{g_H}^{-1}\rangle^{-1} = \frac{V'}{4\pi^2}~, | ||
</math> | </math> | ||
where the last idenity follows from the [[Flux coordinates#Useful properties of the FSA|properties of the flux surface average]]. | where the last idenity follows from the [[Flux coordinates#Useful properties of the FSA|properties of the flux surface average]]. The Hamada angles are sometimes defined in `turns' (i.e. <math>(\theta, \xi) \in [0,1)</math>) instead of radians (<math>(\theta, \xi) \in [0,2\pi)</math>)). This choice together with the choice of the volume <math>V</math> as radial coordinate makes the Jacobian equal to unity. Alternatively one can select <math>\psi = \frac{V}{4\pi^2}</math> as radial coordinate with the same effect. | ||
== Magnetic field and current density expressions in Hamada vector basis == | |||
With the form of the Hamada coordinates' Jacobian we can now write the explicit contravariant form of the magnetic field in terms of the '''Hamada''' basis vectors | |||
:<math> | |||
\mathbf{B} = 2\pi\Psi_{pol}'(V)\mathbf{e}_\theta + 2\pi\Psi_{tor}'(V)\mathbf{e}_\phi~. | |||
</math> | |||
This has the nice property of having flux constant contravariant coefficients (functions of the radial coordinate only). | |||
The covariant expression is less clean | |||
:<math> | |||
\mathbf{B} = \frac{I_{tor}}{2\pi}\nabla\theta + \frac{I_{pol}^d}{2\pi}\nabla\phi + \nabla\tilde\chi~. | |||
</math> | |||
with contributions from the periodic part of the magnetic scalar potential <math>\tilde\chi</math> to all the covariant components. Nonetheless, the '''flux surface averaged Hamada covariant <math>B</math>-field angular components''' have simple expressions, i.e | |||
:<math> | |||
\langle B_\theta\rangle = \langle\mathbf{B}\cdot\mathbf{e}_\theta\rangle = \left\langle \frac{I_{tor}}{2\pi} + \frac{\partial \tilde\chi}{\partial \theta}\right\rangle = \frac{I_{tor}}{2\pi} + (V')^{-1}\int\partial_\theta\tilde\chi \sqrt{g} d\theta d\phi = \frac{I_{tor}}{2\pi} | |||
</math> | |||
where the integral over <math>\theta</math> is zero because the jacobian in Hamda coordinates is not a function of this angle. Similarly | |||
:<math> | |||
\langle B_\phi\rangle = \langle\mathbf{B}\cdot\mathbf{e}_\phi\rangle = \frac{I^d_{pol}}{2\pi}~. | |||
</math> |
Revision as of 10:53, 2 September 2010
Hamada coordinates are a set of magnetic coordinates in which the equilibrium current density lines are straight besides those of magnetic field Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{B}} . The periodic part of the stream functions of both Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{B}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{j}} are flux functions (that can be chosen to be zero without loss of generality).
Form of the Jacobian for Hamada coordinates
In this section, following D'haseleer et al we will translate the condition of straight current density lines into one for the Hamada coordinates Jacobian. For that we will make use of the equilibrium equation Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{j}\times\mathbf{B} = p'\nabla\psi } , which written in a magnetic coordinate system reads
Taking the flux surface average Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle\cdot\rangle} of this equation we find Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-\dot{I}_{tor}{\Psi}'_{pol} + {I}'_{pol}{\Psi}'_{tor})= 4\pi^2{p}'\langle(\sqrt{g_f})^{-1}\rangle^{-1}} , so that we have
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{B}\cdot\nabla\tilde{\eta} = {p}'\left(\frac{\langle(\sqrt{g_f})^{-1}\rangle^{-1}}{\sqrt{g_f}}-1\right) }
In a coordinate system where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{j}} is straight is a function of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi} only, and therefore LHS of this equation must be zero in such a system. It therefore follows that the Jacobian of the Hamada system must satisfy
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{g_H} = \langle\sqrt{g_H}^{-1}\rangle^{-1} = \frac{V'}{4\pi^2}~, }
where the last idenity follows from the properties of the flux surface average. The Hamada angles are sometimes defined in `turns' (i.e. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\theta, \xi) \in [0,1)} ) instead of radians (Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\theta, \xi) \in [0,2\pi)} )). This choice together with the choice of the volume as radial coordinate makes the Jacobian equal to unity. Alternatively one can select Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi = \frac{V}{4\pi^2}} as radial coordinate with the same effect.
Magnetic field and current density expressions in Hamada vector basis
With the form of the Hamada coordinates' Jacobian we can now write the explicit contravariant form of the magnetic field in terms of the Hamada basis vectors
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{B} = 2\pi\Psi_{pol}'(V)\mathbf{e}_\theta + 2\pi\Psi_{tor}'(V)\mathbf{e}_\phi~. }
This has the nice property of having flux constant contravariant coefficients (functions of the radial coordinate only).
The covariant expression is less clean
with contributions from the periodic part of the magnetic scalar potential to all the covariant components. Nonetheless, the flux surface averaged Hamada covariant -field angular components have simple expressions, i.e
where the integral over is zero because the jacobian in Hamda coordinates is not a function of this angle. Similarly