Edge Localized Modes: Difference between revisions

From FusionWiki
Jump to navigation Jump to search
Line 8: Line 8:
* Nonlinear interchange modes <ref>[http://dx.doi.org/10.1088/0741-3335/38/8/046 A. Takayama and M. Wakatani, ''ELM modelling based on the nonlinear interchange mode in edge plasma'', Plasma Phys. Control. Fusion '''38''' (1996) 1411-1414]</ref>
* Nonlinear interchange modes <ref>[http://dx.doi.org/10.1088/0741-3335/38/8/046 A. Takayama and M. Wakatani, ''ELM modelling based on the nonlinear interchange mode in edge plasma'', Plasma Phys. Control. Fusion '''38''' (1996) 1411-1414]</ref>
* Coupled peeling-ballooning modes <ref>[http://link.aip.org/link/?PHPAEN/5/2687/1 J.W. Connor et al, ''Magnetohydrodynamic stability of tokamak edge plasmas'', Phys. Plasmas '''5''' (1998) 2687]</ref><ref>[http://link.aip.org/link/?PHPAEN/9/2037/1 P.B. Snyder et al, ''Edge localized modes and the pedestal: A model based on coupled peeling–ballooning modes'', Phys. Plasmas '''9''' (2002) 2037]</ref><ref>[http://dx.doi.org/10.1088/0741-3335/46/8/003 J.-S. Lönnroth et al, ''Predictive transport modelling of type I ELMy H-mode dynamics using a theory-motivated combined ballooning–peeling model'', Plasma Phys. Control. Fusion '''46''' (2004) 1197-1215]</ref><ref>[http://dx.doi.org/10.1088/0029-5515/49/9/095015 N. Hayashi et al, ''Integrated simulation of ELM energy loss and cycle in improved H-mode plasmas'', Nucl. Fusion '''49''' (2009) 095015]</ref>
* Coupled peeling-ballooning modes <ref>[http://link.aip.org/link/?PHPAEN/5/2687/1 J.W. Connor et al, ''Magnetohydrodynamic stability of tokamak edge plasmas'', Phys. Plasmas '''5''' (1998) 2687]</ref><ref>[http://link.aip.org/link/?PHPAEN/9/2037/1 P.B. Snyder et al, ''Edge localized modes and the pedestal: A model based on coupled peeling–ballooning modes'', Phys. Plasmas '''9''' (2002) 2037]</ref><ref>[http://dx.doi.org/10.1088/0741-3335/46/8/003 J.-S. Lönnroth et al, ''Predictive transport modelling of type I ELMy H-mode dynamics using a theory-motivated combined ballooning–peeling model'', Plasma Phys. Control. Fusion '''46''' (2004) 1197-1215]</ref><ref>[http://dx.doi.org/10.1088/0029-5515/49/9/095015 N. Hayashi et al, ''Integrated simulation of ELM energy loss and cycle in improved H-mode plasmas'', Nucl. Fusion '''49''' (2009) 095015]</ref>
* [[Criticality of equilibrium equation]] <ref> [http://dx.doi.org/10.1088/0741-3335/46/3/L02, Emilia R. Solano, ''Criticality of the Grad–Shafranov equation: transport barriers and fragile equilibria'',  Plasma Phys. Control. Fusion 46 (2004)L7-L13  ] </ref>
* [[Self-Organised Criticality]] <ref>[http://dx.doi.org/10.1088/0029-5515/43/10/003 R. Sánchez et al, ''Modelling of ELM-like phenomena via mixed SOC-diffusive dynamics'', Nucl. Fusion '''43''' (2003) 1031-1039 ]</ref>
* [[Self-Organised Criticality]] <ref>[http://dx.doi.org/10.1088/0029-5515/43/10/003 R. Sánchez et al, ''Modelling of ELM-like phenomena via mixed SOC-diffusive dynamics'', Nucl. Fusion '''43''' (2003) 1031-1039 ]</ref>
* Flux surface peeling <ref>[http://dx.doi.org/10.1016/j.jnucmat.2004.09.067 E.R. Solano et al, ''ELMs and strike point jumps'', Journal of Nuclear Materials '''337-339''' (2005) 747-750 ]</ref>
* Flux surface peeling <ref>[http://dx.doi.org/10.1016/j.jnucmat.2004.09.067 E.R. Solano et al, ''ELMs and strike point jumps'', Journal of Nuclear Materials '''337-339''' (2005) 747-750 ]</ref>

Revision as of 12:47, 3 February 2010

The steep edge gradients (of density and temperature) associated with an H-mode lead to quasi-periodic violent relaxation phenomena, known as Edge Localized Modes (ELMs), which have a strong impact on the surrounding vessel. [1] [2]

Physical mechanism

The physical mechanism of ELMs has not been fully clarified. Several possible explanations have been put forward:

ELMs and machine operation

The occurrence of an ELM leads to a significant expulsion of heat and particles, with deleterious consequences for the vessel wall and machine operation. Although Quiescent H-modes exist (without ELMs), [12] they are generally considered not convenient due to the accumulation of impurities. To achieve steady state, an ELMy H-mode is preferred and this mode of operation is proposed as the standard operating scenario for ITER, thus converting ELM mitigation into a priority. [13]

References

  1. H. Zohm, Edge localized modes (ELMs), Plasma Phys. Control. Fusion 38 (1996) 105-128
  2. D.N. Hill, A review of ELMs in divertor tokamaks, Journal of Nuclear Materials 241-243 (1997) 182-198
  3. A. Takayama and M. Wakatani, ELM modelling based on the nonlinear interchange mode in edge plasma, Plasma Phys. Control. Fusion 38 (1996) 1411-1414
  4. J.W. Connor et al, Magnetohydrodynamic stability of tokamak edge plasmas, Phys. Plasmas 5 (1998) 2687
  5. P.B. Snyder et al, Edge localized modes and the pedestal: A model based on coupled peeling–ballooning modes, Phys. Plasmas 9 (2002) 2037
  6. J.-S. Lönnroth et al, Predictive transport modelling of type I ELMy H-mode dynamics using a theory-motivated combined ballooning–peeling model, Plasma Phys. Control. Fusion 46 (2004) 1197-1215
  7. N. Hayashi et al, Integrated simulation of ELM energy loss and cycle in improved H-mode plasmas, Nucl. Fusion 49 (2009) 095015
  8. Emilia R. Solano, Criticality of the Grad–Shafranov equation: transport barriers and fragile equilibria, Plasma Phys. Control. Fusion 46 (2004)L7-L13
  9. R. Sánchez et al, Modelling of ELM-like phenomena via mixed SOC-diffusive dynamics, Nucl. Fusion 43 (2003) 1031-1039
  10. E.R. Solano et al, ELMs and strike point jumps, Journal of Nuclear Materials 337-339 (2005) 747-750
  11. C.G. Gimblett, Peeling mode relaxation ELM model, AIP Conf. Proc. 871 (2006) 87-99
  12. K.H. Burrell et al, Advances in understanding quiescent H-mode plasmas in DIII-D, Phys. Plasmas 12 (2005) 056121
  13. M.R. Wade, Physics and engineering issues associated with edge localized mode control in ITER, Fusion Engineering and Design 84, Issues 2-6 (2009) 178-185