Profile consistency: Difference between revisions

From FusionWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 7: Line 7:
<ref>[http://dx.doi.org/10.1134/1.1992581 Yu.N. Dnestrovsky et al, ''Self-organization of plasma in tokamaks'', Plasma Physics Reports '''31''', 7 (2005) 529-553]</ref>
<ref>[http://dx.doi.org/10.1134/1.1992581 Yu.N. Dnestrovsky et al, ''Self-organization of plasma in tokamaks'', Plasma Physics Reports '''31''', 7 (2005) 529-553]</ref>
i.e., the feedback mechanism regulating the profiles (by turbulence) is often dominant over the various source terms.
i.e., the feedback mechanism regulating the profiles (by turbulence) is often dominant over the various source terms.
<ref>[http://link.aip.org/link/?PHPAEN/8/4096/1 F. Jenko et al, ''Critical gradient formula for toroidal electron temperature gradient modes'', Phys. Plasmas '''8''' (2001) 4096]</ref>


== References ==
== References ==
<references />
<references />

Revision as of 09:29, 15 September 2009

Profile consistency (or profile resilience) is the observation that profiles (of temperature, density, and pressure) often tend to adopt roughly the same shape (in tokamaks), regardless of the applied heating and fueling profiles. [1] [2] The resulting (stiff) profiles are known as canonical profiles. [3] This phenomenology is due to plasma self-organisation, [4] i.e., the feedback mechanism regulating the profiles (by turbulence) is often dominant over the various source terms. [5]

References