TJ-II:Heavy Ion Beam Probe: Difference between revisions
Jump to navigation
Jump to search
mNo edit summary |
mNo edit summary |
||
Line 2: | Line 2: | ||
The advanced Heavy Ion Beam Probe can simulataneously measure the plasma electric potential ''φ'', the electron density ''n<sub>e</sub>'', the electron temperature ''T<sub>e</sub>'', and a poloidal magnetic field component ''B<sub>p</sub>'' at a point inside the plasma. | The advanced Heavy Ion Beam Probe can simulataneously measure the plasma electric potential ''φ'', the electron density ''n<sub>e</sub>'', the electron temperature ''T<sub>e</sub>'', and a poloidal magnetic field component ''B<sub>p</sub>'' at a point inside the plasma. | ||
<ref>L.I. Krupnik et al., Fusion Engineering and Design '''56-57''' (2001) 935</ref> | <ref>[http://dx.doi.org/10.1016/S0920-3796(01)00428-8 L.I. Krupnik et al., Fusion Engineering and Design '''56-57''' (2001) 935]</ref> | ||
<ref>[http://link.aip.org/link/?RSINAK/72/583/1 I.S. Bondarenko et al., Rev. Sci. Instrum. '''72''', 583 (2001)]</ref> | <ref>[http://link.aip.org/link/?RSINAK/72/583/1 I.S. Bondarenko et al., Rev. Sci. Instrum. '''72''', 583 (2001)]</ref> | ||
This point can be scanned through the plasma cross-section by varying the deflection potentials (active beam control). | This point can be scanned through the plasma cross-section by varying the deflection potentials (active beam control). |
Revision as of 08:02, 4 August 2009
The advanced Heavy Ion Beam Probe can simulataneously measure the plasma electric potential φ, the electron density ne, the electron temperature Te, and a poloidal magnetic field component Bp at a point inside the plasma. [1] [2] This point can be scanned through the plasma cross-section by varying the deflection potentials (active beam control).