Gyrokinetic simulations: Difference between revisions

From FusionWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
The gyrokinetic formalism <ref>[http://pof.aip.org/pfldas/v31/i9/p2670_s1?isAuthorized=no T. S. Hahm. Nonlinear gyrokinetic equations for tokamak microturbulence. Physics of Fluids 31, 2670, 1988.]</ref><ref>[http://rmp.aps.org/abstract/RMP/v79/i2/p421_1 A. J. Brizard and T. S. Hahm. Foundations of nonlinear gyrokinetic theory. Reviews of Modern Physics 2, 421, 2007.]</ref> is based on first principles and provides a valuable tool for investigating low frequency turbulence in fusion plasmas.
The gyrokinetic formalism <ref>[http://pof.aip.org/pfldas/v31/i9/p2670_s1?isAuthorized=no T.S. Hahm, ''Nonlinear gyrokinetic equations for tokamak microturbulence'', Phys. Fluids '''31''', 2670 (1988)]</ref><ref>[http://rmp.aps.org/abstract/RMP/v79/i2/p421_1 A.J. Brizard and T.S. Hahm, ''Foundations of nonlinear gyrokinetic theory'', Rev. Mod. Phys. '''2''', 421 (2007)]</ref> is based on first principles and provides a valuable tool for investigating low frequency turbulence in fusion plasmas.
The Theory Group at the [[Laboratorio Nacional de Fusión]] collaborates with the [http://www.bsc.es/ Barcelona Supercomputing Center] and the [http://www.ipp.mpg.de/ippcms/eng/index.html Max Planck IPP at Greifswald] for the development and exploitation of the [[EUTERPE]]  global gyrokinetic code.
The Theory Group at the [[Laboratorio Nacional de Fusión]] collaborates with the [http://www.bsc.es/ Barcelona Supercomputing Center] and the [http://www.ipp.mpg.de/ippcms/eng/index.html Max Planck IPP at Greifswald] for the development and exploitation of the [[EUTERPE]]  global gyrokinetic code.


The code [[EUTERPE]] has recently been benchmarked against the TORB code <ref>[http://pop.aip.org/phpaen/v9/i3/p898_s1 Hatzky, R Tran, TM Konies, A Kleiber, R Allfrey, SJ .Energy conservation in a nonlinear gyrokinetic particle-in-cell code for ion-temperature-gradient-driven modes in theta-pinch geometry. PHYSICS OF PLASMAS, 9- 3,p. 912,2002.]</ref><ref>C. N¨uhrenberg, R. Hatzky, S. Sorge, et al. Global ITG Turbulence in
The code [[EUTERPE]] has recently been benchmarked against the TORB code <ref>[http://pop.aip.org/phpaen/v9/i3/p898_s1 R. Hatzky, T.M. Tran, A. Konies, R. Kleiber, S.J. Allfrey, ''Energy conservation in a nonlinear gyrokinetic particle-in-cell code for ion-temperature-gradient-driven modes in theta-pinch geometry'', Phys. Plasmas, '''9'''-3, 912 (2002)]</ref><ref>C. Nührenberg, R. Hatzky, S. Sorge, et al., ''Global ITG Turbulence in Screw-Pinch Geometry'', IAEA TM on Innovative Concepts and Theory of Stellarators, Madrid (2005)</ref> in both linear and non-linear simulations <ref>Edilberto Sánchez , Ralf Kleiber, Roman Hatzky, Alejandro Soba, Xavier Sáez, Francisco Castejón and Jose M. Cela, ''Linear and non-linear simulations using the EUTERPE gyrokinetic code'', To appear in IEEE Transactions on Plasma Science (2010)</ref>.
Screw-Pinch Geometry. IAEA TM on Innovative Concepts and Theory
of Stellarators, Madrid 2005</ref> in both linear and non-linear simulations <ref>Edilberto Sánchez , Ralf Kleiber, Roman Hatzky, Alejandro Soba, Xavier Sáez, Francisco Castejón and Jose M. Cela. Linear and non-linear simulations using the
EUTERPE gyrokinetic code. To appear in IEEE Transaction on Plasma Science (2010)</ref>.




==References==
==References==
<references />
<references />

Revision as of 10:01, 4 May 2010

The gyrokinetic formalism [1][2] is based on first principles and provides a valuable tool for investigating low frequency turbulence in fusion plasmas. The Theory Group at the Laboratorio Nacional de Fusión collaborates with the Barcelona Supercomputing Center and the Max Planck IPP at Greifswald for the development and exploitation of the EUTERPE global gyrokinetic code.

The code EUTERPE has recently been benchmarked against the TORB code [3][4] in both linear and non-linear simulations [5].


References

  1. T.S. Hahm, Nonlinear gyrokinetic equations for tokamak microturbulence, Phys. Fluids 31, 2670 (1988)
  2. A.J. Brizard and T.S. Hahm, Foundations of nonlinear gyrokinetic theory, Rev. Mod. Phys. 2, 421 (2007)
  3. R. Hatzky, T.M. Tran, A. Konies, R. Kleiber, S.J. Allfrey, Energy conservation in a nonlinear gyrokinetic particle-in-cell code for ion-temperature-gradient-driven modes in theta-pinch geometry, Phys. Plasmas, 9-3, 912 (2002)
  4. C. Nührenberg, R. Hatzky, S. Sorge, et al., Global ITG Turbulence in Screw-Pinch Geometry, IAEA TM on Innovative Concepts and Theory of Stellarators, Madrid (2005)
  5. Edilberto Sánchez , Ralf Kleiber, Roman Hatzky, Alejandro Soba, Xavier Sáez, Francisco Castejón and Jose M. Cela, Linear and non-linear simulations using the EUTERPE gyrokinetic code, To appear in IEEE Transactions on Plasma Science (2010)