Biorthogonal decomposition: Difference between revisions
(Created page with 'The Biorthogonal Decomposition (BOD, also known as Proper Orthogonal Decomposition, POD) applies to the analysis of multipoint measurements :<math>Y(i,j)\,</math> where ''i=1,.…') |
No edit summary |
||
Line 24: | Line 24: | ||
This is not always the most appropriate assumption: | This is not always the most appropriate assumption: | ||
e.g., travelling waves have a structure such as ''cos(kx-ωt)''; however, most propagating waves can still be recognised clearly by their distinct footprint in the biorthogonal modes (provided there are not too many): a travelling wave will produce a pair of modes with similar amplitude and a 90° phase difference. | e.g., travelling waves have a structure such as ''cos(kx-ωt)''; however, most propagating waves can still be recognised clearly by their distinct footprint in the biorthogonal modes (provided there are not too many): a travelling wave will produce a pair of modes with similar amplitude and a 90° phase difference. | ||
== See also == | |||
* [[:Wikipedia:Principal component analysis|Principal component analysis]] | |||
== References == | == References == | ||
<references /> | <references /> |
Revision as of 14:59, 9 February 2010
The Biorthogonal Decomposition (BOD, also known as Proper Orthogonal Decomposition, POD) applies to the analysis of multipoint measurements
where i=1,...,N is a temporal index and j=1,...,M a spatial index (typically). The time traces Y(i,j) for fixed j are usually sampled at a fixed rate; however the measurement locations x(j) need not be ordered in any specific way.
The BOD decomposes the data matrix as follows:
where ψk is a 'chrono' (a temporal function) and φk a 'topo' (a spatial or detector-dependent function), such that the chronos and topos satisfy the following orthogonality relation
The combination chrono/topo at a given k, ψk(i) φk(j), is called a spatio-temporal 'mode' of the fluctuating system, and is constructed from the data matrix without any prejudice regarding the mode shape. The λk are the eigenvalues (sorted in decreasing order), where k=1,...,min(N,M). This decomposition is achieved using a standard Singular value decomposition of the data matrix Y(i,j). Thus, the oscillations of the spatiotemporal fluctuating field are represented by means of a very small number of spatio-temporal modes that are constructed from the data themselves, without prejudice regarding the mode shape. [1]
A limitation of the technique is that it assumes space-time separability. This is not always the most appropriate assumption: e.g., travelling waves have a structure such as cos(kx-ωt); however, most propagating waves can still be recognised clearly by their distinct footprint in the biorthogonal modes (provided there are not too many): a travelling wave will produce a pair of modes with similar amplitude and a 90° phase difference.