Neutronics in Fusion: Difference between revisions

No edit summary
No edit summary
 
Line 122: Line 122:
"Tritium production in CANDU reactors," *Wikipedia*, https://en.wikipedia.org/wiki/Tritium#Production
"Tritium production in CANDU reactors," *Wikipedia*, https://en.wikipedia.org/wiki/Tritium#Production
</ref>
</ref>


<ref name="TRANSPneutron">
<ref name="TRANSPneutron">
A. Sperduti et al., “Validation of neutron emission and neutron energy spectrum calculations on a Mega Ampere Spherical Tokamak,” *Plasma Physics and Controlled Fusion*, vol. 63, no. 1, 2021 — benchmarks TRANSP/NUBEAM neutron emission predictions against measurements. :contentReference[oaicite:0]{index=0}
A. Sperduti et al., “Validation of neutron emission and neutron energy spectrum calculations on a Mega Ampere Spherical Tokamak,” *Plasma Physics and Controlled Fusion*, vol. 63, no. 1, 2021.
</ref>
</ref>


<ref name="TRANSPsource">
<ref name="TRANSPsource">
“Generation of a plasma neutron source for Monte Carlo neutron transport calculations in the tokamak JET,” *Fusion Engineering and Design*, vol. 136, 2018 — demonstrates use of TRANSP for neutron production and spatial profiles. :contentReference[oaicite:1]{index=1}
“Generation of a plasma neutron source for Monte Carlo neutron transport calculations in the tokamak JET,” *Fusion Engineering and Design*, vol. 136, 2018.
</ref>
</ref>


<ref name="NUBEAM">
<ref name="NUBEAM">
A. Pankin et al., “The tokamak Monte Carlo fast ion module NUBEAM in the National Transport Code Collaboration library,” *Computer Physics Communications*, vol. 159 (2004) — describes NUBEAM modeling of fast ions and neutron emission profiles via fusion reactions. :contentReference[oaicite:2]{index=2}
A. Pankin et al., “The tokamak Monte Carlo fast ion module NUBEAM in the National Transport Code Collaboration library,” *Computer Physics Communications*, vol. 159, 2004.
</ref>
</ref>


<ref name="FIDASIM">
<ref name="FIDASIM">
B. Geiger, L. Stagner, W. W. Heidbrink et al., “Progress in modelling fast‑ion D‑alpha spectra and neutral particle analyzer fluxes using FIDASIM,” *Plasma Physics and Controlled Fusion*, 2020 — details FIDASIM modeling of fast ions and diagnostic signals (supports neutron source modeling through fast‑ion distributions). :contentReference[oaicite:3]{index=3}
B. Geiger, L. Stagner, W. W. Heidbrink et al., “Progress in modelling fast‑ion D‑alpha spectra and neutral particle analyzer fluxes using FIDASIM,” *Plasma Physics and Controlled Fusion*, 2020.
</ref>
</ref>


<ref name="ASCOTneutron">
<ref name="ASCOTneutron">
H. Weisen, P. Sirén, J. Varje & JET Contributors, “Comparison of JET‑C DD neutron rates independently predicted by the ASCOT and TRANSP Monte Carlo heating codes,” *Nuclear Fusion*, vol. 62, 016017 (2022) — uses ASCOT to model neutron rates in tokamak plasmas. :contentReference[oaicite:4]{index=4}
H. Weisen, P. Sirén, J. Varje & JET Contributors, “Comparison of JET‑C DD neutron rates independently predicted by the ASCOT and TRANSP Monte Carlo heating codes,” *Nuclear Fusion*, vol. 62, 016017, 2022.
</ref>
</ref>


<ref name="ASCOTfurth">
<ref name="ASCOTfurth">
J. Kontula et al., “ASCOT simulations of 14 MeV neutron rates in W7‑X: effect of magnetic configuration,” arXiv:2009.02925 (2020) — applies ASCOT to quantify neutron production rates in stellarator plasmas. :contentReference[oaicite:5]{index=5}
J. Kontula et al., “ASCOT simulations of 14 MeV neutron rates in W7‑X: effect of magnetic configuration,” arXiv:2009.02925, 2020.
</ref>
</ref>