Profile consistency: Difference between revisions

From FusionWiki
Jump to navigation Jump to search
No edit summary
(Updated reference links)
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
Profile consistency (or profile resilience or stiffness) is the observation that profiles (of temperature, density, and pressure) often tend to adopt roughly the same shape (in [[Tokamak|tokamaks]]), regardless of the applied heating and fueling profiles.
Profile consistency (or profile resilience or stiffness) is the observation that profiles (of temperature, density, and pressure) often tend to adopt roughly the same shape, regardless of the applied heating and fueling profiles.
<ref>B. Coppi, ''Nonclassical Transport and the "Principle of Profile Consistency"'', Comments Plasma Phys. Cont. Fusion '''5''', 6 (1980) 261-270</ref>
<ref>B. Coppi, ''Nonclassical Transport and the "Principle of Profile Consistency"'', Comments Plasma Phys. Cont. Fusion '''5''', 6 (1980) 261-270</ref>
<ref>Yu.N. Dnestrovsky et al, Sov. J. Plasma Phys. '''16''' (1990) 120</ref>
<ref>Yu.N. Dnestrovsky et al, Sov. J. Plasma Phys. '''16''' (1990) 120</ref>
The resulting (stiff) profiles are known as ''canonical'' profiles.
The resulting (stiff) profiles are known as ''canonical'' profiles.
<ref>[http://dx.doi.org/10.1134/1.1520282 Yu.N. Dnestrovsky et al, ''Canonical profiles in tokamak plasmas with an arbitrary cross section'', Plasma Physics Reports '''28''', 11 (2002) 887-899]</ref>
<ref>Yu.N. Dnestrovsky et al, ''Canonical profiles in tokamak plasmas with an arbitrary cross section'', [[doi:10.1134/1.1520282|Plasma Physics Reports '''28''', 11 (2002) 887-899]]</ref>
This phenomenology is due to plasma [[Self-Organised Criticality|self-organisation]],
This phenomenology is due to plasma [[Self-Organised Criticality|self-organisation]],
<ref>[http://dx.doi.org/10.1134/1.1992581 Yu.N. Dnestrovsky et al, ''Self-organization of plasma in tokamaks'', Plasma Physics Reports '''31''', 7 (2005) 529-553]</ref>
<ref>Yu.N. Dnestrovsky et al, ''Self-organization of plasma in tokamaks'', [[doi:10.1134/1.1992581|Plasma Physics Reports '''31''', 7 (2005) 529-553]]</ref>
i.e., the feedback mechanism regulating the profiles (by turbulence) is often dominant over the various source terms.
i.e., the feedback mechanism regulating the profiles (by turbulence) is often dominant over the various source terms.
<ref>[http://link.aip.org/link/?PHPAEN/8/4096/1 F. Jenko et al, ''Critical gradient formula for toroidal electron temperature gradient modes'', Phys. Plasmas '''8''' (2001) 4096]</ref>
<ref>F. Jenko et al, ''Critical gradient formula for toroidal electron temperature gradient modes'', [[doi:10.1063/1.1391261|Phys. Plasmas '''8''' (2001) 4096]]</ref>


== Observations ==
== Observations ==
Line 13: Line 13:
=== [[Tokamak]]s ===
=== [[Tokamak]]s ===


* TFTR <ref>[http://dx.doi.org/10.1088/0029-5515/26/7/002 E.D. Fredrickson, J.D. Callen, et al., ''Heat pulse propagation studies in TFTR'', Nucl. Fusion '''26''' (1986) 849]</ref>
* TFTR <ref>E.D. Fredrickson, J.D. Callen, et al., ''Heat pulse propagation studies in TFTR'', [[doi:10.1088/0029-5515/26/7/002|Nucl. Fusion '''26''' (1986) 849]]</ref>
* ASDEX <ref>[http://dx.doi.org/10.1088/0029-5515/32/1/I07 G. Becker, ''Electron temperature profile invariance in OH, L- and H-mode plasmas and consequences for the anomalous transport'', Nucl. Fusion '''32''' (1992) 81]</ref>
* ASDEX <ref>G. Becker, ''Electron temperature profile invariance in OH, L- and H-mode plasmas and consequences for the anomalous transport'', [[doi:10.1088/0029-5515/32/1/I07|Nucl. Fusion '''32''' (1992) 81]]</ref>
* Various devices <ref>[http://dx.doi.org/10.1088/0741-3335/35/10/002 F. Wagner and U. Stroth, ''Transport in toroidal devices-the experimentalist's view'', Plasma Phys. Control. Fusion '''35''' (1993) 1321]</ref><ref>[http://dx.doi.org/10.1088/0741-3335/43/12A/325 F. Ryter, C. Angioni, et al., ''Experimental studies of electron transport'', Plasma Phys. Control. Fusion '''43''' (2001) A323]</ref>
* Various devices <ref>F. Wagner and U. Stroth, ''Transport in toroidal devices-the experimentalist's view'', [[doi:10.1088/0741-3335/35/10/002|Plasma Phys. Control. Fusion '''35''' (1993) 1321]]</ref><ref>F. Ryter, C. Angioni, et al., ''Experimental studies of electron transport'', [[doi:10.1088/0741-3335/43/12A/325|Plasma Phys. Control. Fusion '''43''' (2001) A323]]</ref>


=== [[Stellarator]]s ===
=== [[Stellarator]]s ===


* W7-AS <ref>[http://dx.doi.org/10.1088/0741-3335/40/1/002 U. Stroth, ''A comparative study of transport in stellarators and tokamaks'', Plasma Phys. Control. Fusion '''40''' (1998) 9]</ref>
* W7-AS <ref>U. Stroth, ''A comparative study of transport in stellarators and tokamaks'', [[doi:10.1088/0741-3335/40/1/002|Plasma Phys. Control. Fusion '''40''' (1998) 9]]</ref>
* Various devices <ref>[http://www-pub.iaea.org/MTCD/Meetings/FEC2008/th_p8-24.pdf Yu.N. Dnestrovsky et al, IAEA Fusion Energy Conference, Geneva (2008) TH/P8-24]</ref>
* Various devices <ref>Yu.N. Dnestrovsky et al, [http://www-pub.iaea.org/MTCD/Meetings/FEC2008/th_p8-24.pdf IAEA Fusion Energy Conference, Geneva (2008) TH/P8-24]</ref>


== Proposed explanations ==
== Proposed explanations ==


The phenomenon is not fully understood, but attempts at explanation have been made. These include:
The phenomenon is not fully understood, but attempts at explanation have been made. These include:
* Marginal stability <ref>[[doi:10.1063/1.871063|P.H. Diamond and T.S. Hahm, ''On the dynamics of turbulent transport near marginal stability'', Phys. Plasmas '''2''' (1995) 3640]]</ref>
* Marginal stability <ref>P.H. Diamond and T.S. Hahm, ''On the dynamics of turbulent transport near marginal stability'', [[doi:10.1063/1.871063|Phys. Plasmas '''2''' (1995) 3640]]</ref>
* Critical gradient models <ref>[[doi:10.1088/0741-3335/44/8/301|F. Imbeaux and X. Garbet, ''Analytical solutions for the propagation of heat pulses with temperature gradient length-dependent diffusion coefficient'', Plasma Phys. Control. Fusion '''44''' (2002) 1425']]</ref>
* Critical gradient models <ref>F. Imbeaux and X. Garbet, ''Analytical solutions for the propagation of heat pulses with temperature gradient length-dependent diffusion coefficient'', [[doi:10.1088/0741-3335/44/8/301|Plasma Phys. Control. Fusion '''44''' (2002) 1425]]</ref>
* Energy pinch <ref>[[doi:10.1103/PhysRevLett.85.4534|P. Mantica, G. Gorini, G.M.D. Hogeweij, N.J. Lopes Cardozo, and A.M.R. Schilham, ''Heat Convection and Transport Barriers in Low-Magnetic-Shear Rijnhuizen Tokamak Project Plasmas'', Phys. Rev. Lett. '''85''' (2000) 4534–4537]]</ref><ref>[[doi:10.1063/1.1951667|X. Garbet, N. Dubuit, E. Asp, Y. Sarazin, C. Bourdelle, P. Ghendrih, and G.T. Hoang, ''Turbulent fluxes and entropy production rate'', Phys. Plasmas '''12''' (2005) 082511]]</ref><ref>[[doi:10.1103/PhysRevLett.95.185002|P. Mantica, A. Thyagaraja, J. Weiland, G.M.D. Hogeweij, and P.J. Knight, ''Heat Pinches in Electron-Heated Tokamak Plasmas: Theoretical Turbulence Models versus Experiments'', Phys. Rev. Lett. '''95''' (2005) 185002]]</ref>
* [[Heat pinch|Energy pinch]] <ref>P. Mantica, G. Gorini, G.M.D. Hogeweij, N.J. Lopes Cardozo, and A.M.R. Schilham, ''Heat Convection and Transport Barriers in Low-Magnetic-Shear Rijnhuizen Tokamak Project Plasmas'', [[doi:10.1103/PhysRevLett.85.4534|Phys. Rev. Lett. '''85''' (2000) 4534–4537]]</ref><ref>X. Garbet, N. Dubuit, E. Asp, Y. Sarazin, C. Bourdelle, P. Ghendrih, and G.T. Hoang, ''Turbulent fluxes and entropy production rate'', [[doi:10.1063/1.1951667|Phys. Plasmas '''12''' (2005) 082511]]</ref><ref>P. Mantica, A. Thyagaraja, J. Weiland, G.M.D. Hogeweij, and P.J. Knight, ''Heat Pinches in Electron-Heated Tokamak Plasmas: Theoretical Turbulence Models versus Experiments'', [[doi:10.1103/PhysRevLett.95.185002|Phys. Rev. Lett. '''95''' (2005) 185002]]</ref>
* Turbulent equipartition <ref>[[doi:10.1088/0029-5515/51/8/083006|Lu Wang and P.H. Diamond, ''Kinetic theory of the turbulent energy pinch in tokamak plasmas'', Nucl. Fusion '''51''' (2011) 083006]]</ref>
* [[Self-Organised Criticality]]
* Turbulent equipartition <ref>V. Naulin, A.H. Nielsen, and J. Juul Rasmussen, ''Turbulence spreading, anomalous transport, and pinch effect'', [[doi:10.1063/1.2141396|Phys. Plasmas '''12''' (2005) 122306]]</ref><ref>Lu Wang and P.H. Diamond, ''Kinetic theory of the turbulent energy pinch in tokamak plasmas'', [[doi:10.1088/0029-5515/51/8/083006|Nucl. Fusion '''51''' (2011) 083006]]</ref>


== Quantification methods ==
== Quantification methods ==
Line 35: Line 36:


It is customary to introduce an ad-hoc transport model with a critical gradient (sharply enhanced transport above a critical value of the local gradient) to attempt to quantify the 'criticality' of transport:
It is customary to introduce an ad-hoc transport model with a critical gradient (sharply enhanced transport above a critical value of the local gradient) to attempt to quantify the 'criticality' of transport:
<ref>[http://dx.doi.org/10.1088/0741-3335/43/11/306 F. Imbeaux, F. Ryter, and X. Garbet, ''Modelling of ECH modulation experiments in ASDEX Upgrade with an empirical critical temperature gradient length transport model'', Plasma Phys. Control. Fusion '''43''' (2001) 1503]</ref>
<ref>F. Imbeaux, F. Ryter, and X. Garbet, ''Modelling of ECH modulation experiments in ASDEX Upgrade with an empirical critical temperature gradient length transport model'', [[doi:10.1088/0741-3335/43/11/306|Plasma Phys. Control. Fusion '''43''' (2001) 1503]]</ref>
<ref>[http://dx.doi.org/10.1088/0741-3335/46/9/002 X. Garbet, P. Mantica, F. Ryter, et al., ''Profile stiffness and global confinement'', Plasma Phys. Control. Fusion '''46''' (2004) 1351]</ref>
<ref>X. Garbet, P. Mantica, F. Ryter, et al., ''Profile stiffness and global confinement'', [[doi:10.1088/0741-3335/46/9/002|Plasma Phys. Control. Fusion '''46''' (2004) 1351]]</ref>


:<math>\chi = \chi_0 + \chi_1 \xi \left ( \frac{R}{L_T}-\frac{R}{L_{T,crit}}\right )^\alpha H\left ( \frac{R}{L_T}-\frac{R}{L_{T,crit}}\right )</math>
:<math>\chi = \chi_0 + \chi_1 \xi \left ( \frac{R}{L_T}-\frac{R}{L_{T,crit}}\right )^\alpha H\left ( \frac{R}{L_T}-\frac{R}{L_{T,crit}}\right )</math>
Line 48: Line 49:


However, it is possible to devise methods for the objective quantification of profile stiffness that do not depend so much on the introduction of any ad-hoc model, simply by making this idea of stiffness explicit (i.e., by measuring the response of the gradient to a change in drive or heat source).
However, it is possible to devise methods for the objective quantification of profile stiffness that do not depend so much on the introduction of any ad-hoc model, simply by making this idea of stiffness explicit (i.e., by measuring the response of the gradient to a change in drive or heat source).
<ref>[http://www.jspf.or.jp/PFR/PFR_articles/pfr2008S1/pfr2008_03-S1070.html B.Ph. van Milligen et al, ''Quantifying profile stiffness'', Plasma and Fusion Research, '''3''' (2008) S1070]</ref>
<ref>B.Ph. van Milligen et al, ''Quantifying profile stiffness'', [http://www.jspf.or.jp/PFR/PFR_articles/pfr2008S1/pfr2008_03-S1070.html Plasma and Fusion Research, '''3''' (2008) S1070]</ref>


The [[:Wikipedia:Stiffness|general definition of stiffness of a system]] is  
The [[:Wikipedia:Stiffness|general definition of stiffness of a system]] is  

Latest revision as of 14:55, 3 April 2018

Profile consistency (or profile resilience or stiffness) is the observation that profiles (of temperature, density, and pressure) often tend to adopt roughly the same shape, regardless of the applied heating and fueling profiles. [1] [2] The resulting (stiff) profiles are known as canonical profiles. [3] This phenomenology is due to plasma self-organisation, [4] i.e., the feedback mechanism regulating the profiles (by turbulence) is often dominant over the various source terms. [5]

Observations

Tokamaks

Stellarators

Proposed explanations

The phenomenon is not fully understood, but attempts at explanation have been made. These include:

Quantification methods

Ad-hoc transport models

It is customary to introduce an ad-hoc transport model with a critical gradient (sharply enhanced transport above a critical value of the local gradient) to attempt to quantify the 'criticality' of transport: [19] [20]

Here, H is a step function (to activate supercritical transport), LT = T/∇ T is the temperature gradient scale length, and χ is the heat transport coefficient (χ0 and χ1 being the sub- and super-critical transport coefficients, and ξ the 'stiffness factor'). This sharply non-linear dependence of the transport coefficient on the relevant profile parameter (LT) makes the profiles 'stiff' in the sense that the gradients (LT) will change little in response to a large change in drive (the heat source) in the appropriate parameter range.

The degree of stiffness can then be gauged by fitting the predictions of the ad-hoc model to experimental results, involving different heating schemes and/or heating modulation.

Directly measuring stiffness

However, it is possible to devise methods for the objective quantification of profile stiffness that do not depend so much on the introduction of any ad-hoc model, simply by making this idea of stiffness explicit (i.e., by measuring the response of the gradient to a change in drive or heat source). [21]

The general definition of stiffness of a system is

i.e., the stiffness κ is the applied force change Δ F divided by the system response (displacement) δ. In the case at hand, the (thermodynamic) force or drive is the heat flux Q, whereas the system response is the (thermodynamic) gradient ∇ T (but see below).

A useful measure of stiffness should depend on the quantities (Δ F and δ) in such a way that the extreme case of a totally stiff system would correspond to κ = ∞ (δ = 0). Thus, assuming that profile stiffness is best evidenced in the normalized gradient (or inverse gradient length) ∇ T / T (based on both experimental observation and, e.g., ETG instability theory), an appropriate stiffness definition for the temperature profile could be:

where the heat flux Q has been normalized by the pressure nT so that κ has the dimension of a heat diffusivity. A dimensionless stiffness measure is obtained by normalizing κ to the background heat diffusivity χ: C = κ/χ. A non-stiff situation would correspond to C = 1, whereas a stiff situation would yield C >> 1. One concludes that the stiffness can be measured directly by simply observing the behaviour of the gradients as the drive (Q) is changed.

References

  1. B. Coppi, Nonclassical Transport and the "Principle of Profile Consistency", Comments Plasma Phys. Cont. Fusion 5, 6 (1980) 261-270
  2. Yu.N. Dnestrovsky et al, Sov. J. Plasma Phys. 16 (1990) 120
  3. Yu.N. Dnestrovsky et al, Canonical profiles in tokamak plasmas with an arbitrary cross section, Plasma Physics Reports 28, 11 (2002) 887-899
  4. Yu.N. Dnestrovsky et al, Self-organization of plasma in tokamaks, Plasma Physics Reports 31, 7 (2005) 529-553
  5. F. Jenko et al, Critical gradient formula for toroidal electron temperature gradient modes, Phys. Plasmas 8 (2001) 4096
  6. E.D. Fredrickson, J.D. Callen, et al., Heat pulse propagation studies in TFTR, Nucl. Fusion 26 (1986) 849
  7. G. Becker, Electron temperature profile invariance in OH, L- and H-mode plasmas and consequences for the anomalous transport, Nucl. Fusion 32 (1992) 81
  8. F. Wagner and U. Stroth, Transport in toroidal devices-the experimentalist's view, Plasma Phys. Control. Fusion 35 (1993) 1321
  9. F. Ryter, C. Angioni, et al., Experimental studies of electron transport, Plasma Phys. Control. Fusion 43 (2001) A323
  10. U. Stroth, A comparative study of transport in stellarators and tokamaks, Plasma Phys. Control. Fusion 40 (1998) 9
  11. Yu.N. Dnestrovsky et al, IAEA Fusion Energy Conference, Geneva (2008) TH/P8-24
  12. P.H. Diamond and T.S. Hahm, On the dynamics of turbulent transport near marginal stability, Phys. Plasmas 2 (1995) 3640
  13. F. Imbeaux and X. Garbet, Analytical solutions for the propagation of heat pulses with temperature gradient length-dependent diffusion coefficient, Plasma Phys. Control. Fusion 44 (2002) 1425
  14. P. Mantica, G. Gorini, G.M.D. Hogeweij, N.J. Lopes Cardozo, and A.M.R. Schilham, Heat Convection and Transport Barriers in Low-Magnetic-Shear Rijnhuizen Tokamak Project Plasmas, Phys. Rev. Lett. 85 (2000) 4534–4537
  15. X. Garbet, N. Dubuit, E. Asp, Y. Sarazin, C. Bourdelle, P. Ghendrih, and G.T. Hoang, Turbulent fluxes and entropy production rate, Phys. Plasmas 12 (2005) 082511
  16. P. Mantica, A. Thyagaraja, J. Weiland, G.M.D. Hogeweij, and P.J. Knight, Heat Pinches in Electron-Heated Tokamak Plasmas: Theoretical Turbulence Models versus Experiments, Phys. Rev. Lett. 95 (2005) 185002
  17. V. Naulin, A.H. Nielsen, and J. Juul Rasmussen, Turbulence spreading, anomalous transport, and pinch effect, Phys. Plasmas 12 (2005) 122306
  18. Lu Wang and P.H. Diamond, Kinetic theory of the turbulent energy pinch in tokamak plasmas, Nucl. Fusion 51 (2011) 083006
  19. F. Imbeaux, F. Ryter, and X. Garbet, Modelling of ECH modulation experiments in ASDEX Upgrade with an empirical critical temperature gradient length transport model, Plasma Phys. Control. Fusion 43 (2001) 1503
  20. X. Garbet, P. Mantica, F. Ryter, et al., Profile stiffness and global confinement, Plasma Phys. Control. Fusion 46 (2004) 1351
  21. B.Ph. van Milligen et al, Quantifying profile stiffness, Plasma and Fusion Research, 3 (2008) S1070