Reynolds stress: Difference between revisions

No edit summary
No edit summary
 
(4 intermediate revisions by 3 users not shown)
Line 3: Line 3:


Starting from the incompressible momentum balance equation, neglecting the dissipative pressure tensor, in slab coordinates (think of ''x'' as radial, ''y'' as poloidal, and ''z'' as toroidal):
Starting from the incompressible momentum balance equation, neglecting the dissipative pressure tensor, in slab coordinates (think of ''x'' as radial, ''y'' as poloidal, and ''z'' as toroidal):
<ref>R. Balescu, ''Aspects of Anomalous Transport in Plasmas'', Institute of Physics Pub., Bristol and Philadelphia, 2005, ISBN 9780750310307</ref>
<ref>R. Balescu, ''Aspects of Anomalous Transport in Plasmas'', Institute of Physics Pub., Bristol and Philadelphia, 2005, {{ISBN|9780750310307}}</ref>


:<math>\frac{\partial u_y}{\partial t} + \nabla_x \left ( u_x u_y \right ) = -\nabla_y P + \frac{1}{\rho} \left ( \vec{j} \times \vec{B} \right )_y</math>
:<math>\frac{\partial u_y}{\partial t} + \nabla_x \left ( u_x u_y \right ) = -\frac{1}{\rho}\nabla_y P + \frac{1}{\rho} \left ( \vec{j} \times \vec{B} \right )_y</math>


Averaging over a [[Flux surface|magnetic surface]] (i.e., over ''y''), the right-hand side cancels:  
Averaging over a [[Flux surface|magnetic surface]] (i.e., over ''y''), the right-hand side cancels:  
Line 27: Line 27:
:<math>R_{xy} = \left \langle \tilde{u}_x \tilde{u}_y \right \rangle</math>
:<math>R_{xy} = \left \langle \tilde{u}_x \tilde{u}_y \right \rangle</math>


Thus, a non-zero value of the gradient of the Reynolds stress (of fluctuating flow components) can drive a laminar flow. Obviously, <math>\tilde{u}_x</math> and <math>\tilde{u}_y</math> must be ''correlated'' for this to work, which will depend on the details of the (equations describing the) turbulence.
Thus, a non-zero value of the gradient of the Reynolds stress (of fluctuating flow components) can drive a laminar flow. Obviously, <math>\tilde{u}_x</math> and <math>\tilde{u}_y</math> must be ''correlated'' for this to work.
This correlation occurs naturally in the presence of a background (mean) gradient driving turbulent transport.
 
Once the laminar flow shear develops, it may suppress small-scale turbulence, leading to a reduction of transport.
<ref>[http://link.aps.org/doi/10.1103/RevModPhys.72.109 P. W. Terry, ''Suppression of turbulence and transport by sheared flow'', Rev. Mod. Phys. '''72''' (2000) 109–165]</ref>


== See also ==
== See also ==