Reynolds stress: Difference between revisions

From FusionWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 2: Line 2:
<ref>[http://dx.doi.org/10.1088/0741-3335/43/10/308 S.B. Korsholm et al, ''Reynolds stress and shear flow generation'', Plasma Phys. Control. Fusion '''43''' (2001) 1377]</ref>
<ref>[http://dx.doi.org/10.1088/0741-3335/43/10/308 S.B. Korsholm et al, ''Reynolds stress and shear flow generation'', Plasma Phys. Control. Fusion '''43''' (2001) 1377]</ref>


Starting from the incompressible momentum balance equation, neglecting the dissipative pressure tensor, in slab coordinates:
Starting from the incompressible momentum balance equation, neglecting the dissipative pressure tensor, in slab coordinates (think of ''x'' as radial, ''y'' as poloidal, and ''z'' as toroidal):
<ref>R. Balescu, ''Aspects of Anomalous Transport in Plasmas'', Institute of Physics Pub., Bristol and Philadelphia, 2005, ISBN 9780750310307</ref>
<ref>R. Balescu, ''Aspects of Anomalous Transport in Plasmas'', Institute of Physics Pub., Bristol and Philadelphia, 2005, ISBN 9780750310307</ref>



Revision as of 20:09, 12 July 2011

In the context of fusion plasmas, the Reynolds stress is a mechanism for generation of sheared flow from turbulence. [1]

Starting from the incompressible momentum balance equation, neglecting the dissipative pressure tensor, in slab coordinates (think of x as radial, y as poloidal, and z as toroidal): [2]

Averaging over a magnetic surface (i.e., over y), the right-hand side cancels:

It may seem as if one has lost all information concerning the background field. However, this is not true, as the choice of the x,y,z coordinate system depends, precisely, on the background magnetic field (and, in particular, on the cited flux surfaces). The corresponding anisotropy is in fact essential to the effectiveness of the Reynolds Stress mechanism.

Now, writing the flow as the sum of a mean and a fluctuating part

one obtains

Here, the Reynolds stress tensor appears:

Thus, a non-zero value of the gradient of the Reynolds stress (of fluctuating flow components) can drive a laminar flow. Obviously, and must be correlated for this to work, which will depend on the details of the (equations describing the) turbulence.

See also

References

  1. S.B. Korsholm et al, Reynolds stress and shear flow generation, Plasma Phys. Control. Fusion 43 (2001) 1377
  2. R. Balescu, Aspects of Anomalous Transport in Plasmas, Institute of Physics Pub., Bristol and Philadelphia, 2005, ISBN 9780750310307