Hamada coordinates: Difference between revisions

From FusionWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 19: Line 19:


== Magnetic field and current density expressions in Hamada vector basis ==
== Magnetic field and current density expressions in Hamada vector basis ==
With the form of the Hamada coordinates' Jacobian we can now write the explicit contravariant form of the magnetic field in terms of the '''Hamada''' basis vectors
With the form of the Hamada coordinates' Jacobian we can now write the explicit [[Flux coordinates#Contravariant Form|contravariant form]] of the magnetic field in terms of the '''Hamada''' basis vectors
:<math>
:<math>
  \mathbf{B} = 2\pi\Psi_{pol}'(V)\mathbf{e}_\theta + 2\pi\Psi_{tor}'(V)\mathbf{e}_\phi~.
  \mathbf{B} = 2\pi\Psi_{pol}'(V)\mathbf{e}_\theta + 2\pi\Psi_{tor}'(V)\mathbf{e}_\phi~.
Line 25: Line 25:
This has the nice property of having flux constant contravariant coefficients (functions of the radial coordinate only).
This has the nice property of having flux constant contravariant coefficients (functions of the radial coordinate only).


The covariant expression is less clean
The [[Flux coordinates#Convariant Form |covariant expression]] is less clean
:<math>
:<math>
\mathbf{B} =  \frac{I_{tor}}{2\pi}\nabla\theta + \frac{I_{pol}^d}{2\pi}\nabla\phi + \nabla\tilde\chi~.
\mathbf{B} =  \frac{I_{tor}}{2\pi}\nabla\theta + \frac{I_{pol}^d}{2\pi}\nabla\phi + \nabla\tilde\chi~.
Line 33: Line 33:
\langle B_\theta\rangle = \langle\mathbf{B}\cdot\mathbf{e}_\theta\rangle = \left\langle \frac{I_{tor}}{2\pi} + \frac{\partial \tilde\chi}{\partial \theta}\right\rangle = \frac{I_{tor}}{2\pi} + (V')^{-1}\int\partial_\theta\tilde\chi \sqrt{g} d\theta d\phi = \frac{I_{tor}}{2\pi}
\langle B_\theta\rangle = \langle\mathbf{B}\cdot\mathbf{e}_\theta\rangle = \left\langle \frac{I_{tor}}{2\pi} + \frac{\partial \tilde\chi}{\partial \theta}\right\rangle = \frac{I_{tor}}{2\pi} + (V')^{-1}\int\partial_\theta\tilde\chi \sqrt{g} d\theta d\phi = \frac{I_{tor}}{2\pi}
</math>
</math>
where the integral over <math>\theta</math> is zero because the jacobian in Hamda coordinates is not a function of this angle. Similarly
where the integral over <math>\theta</math> is zero because the jacobian in Hamada coordinates is not a function of this angle. Similarly
:<math>
:<math>
\langle B_\phi\rangle = \langle\mathbf{B}\cdot\mathbf{e}_\phi\rangle = \frac{I^d_{pol}}{2\pi}~.
\langle B_\phi\rangle = \langle\mathbf{B}\cdot\mathbf{e}_\phi\rangle = \frac{I^d_{pol}}{2\pi}~.
</math>
</math>

Revision as of 09:57, 2 September 2010

Hamada coordinates are a set of magnetic coordinates in which the equilibrium current density lines are straight besides those of magnetic field . The periodic part of the stream functions of both and are flux functions (that can be chosen to be zero without loss of generality).

Form of the Jacobian for Hamada coordinates

In this section, following D'haseleer et al we will translate the condition of straight current density lines into one for the Hamada coordinates Jacobian. For that we will make use of the equilibrium equation , which written in a magnetic coordinate system reads

Taking the flux surface average of this equation we find , so that we have

In a coordinate system where is straight is a function of only, and therefore LHS of this equation must be zero in such a system. It therefore follows that the Jacobian of the Hamada system must satisfy

where the last idenity follows from the properties of the flux surface average. The Hamada angles are sometimes defined in `turns' (i.e. ) instead of radians ()). This choice together with the choice of the volume as radial coordinate makes the Jacobian equal to unity. Alternatively one can select as radial coordinate with the same effect.

Magnetic field and current density expressions in Hamada vector basis

With the form of the Hamada coordinates' Jacobian we can now write the explicit contravariant form of the magnetic field in terms of the Hamada basis vectors

This has the nice property of having flux constant contravariant coefficients (functions of the radial coordinate only).

The covariant expression is less clean

with contributions from the periodic part of the magnetic scalar potential to all the covariant components. Nonetheless, the flux surface averaged Hamada covariant -field angular components have simple expressions, i.e

where the integral over is zero because the jacobian in Hamada coordinates is not a function of this angle. Similarly