Function parametrization: Difference between revisions

From FusionWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 5: Line 5:


                                                                                  
                                                                                  
The method of function parameterization (FP) consists of the                  
The method of function parameterization (FP) consists of the numerical determination, by statistical regression on a database of simulated states, of  simple functional representations  
numerical determination,                                                      
of   parameters characterizing the state of a particular physical system, where the arguments of the functions are statistically independent combinations of diagnostic raw measurements of
by statistical regression on a database of                                    
the system whose geometry is fixed.  The technique,  developed by H. Wind for the purpose of momentum determination from spark chamber data
simulated states, of  simple functional representations of                    
parameters characterizing the state of a particular physical                  
system, where                                                                
the arguments of the functions are statistically independent                  
combinations of diagnostic raw measurements                                    
of the system whose geometry is                                                
fixed.  The technique,  developed by H. Wind                                  
for the purpose of momentum determination from spark chamber data              
<ref>    Wind, H.,                                                                 
<ref>    Wind, H.,                                                                 
     `Function Parametrization'                                                 
     `Function Parametrization'                                                 
Line 23: Line 15:
finding',  (b) `interpolation and function representation'                   
finding',  (b) `interpolation and function representation'                   
in ``Formulae and Methods in Experimental Data Evaluation'',                     
in ``Formulae and Methods in Experimental Data Evaluation'',                     
Vol.~3, European Physical Society, Geneva, 1984</ref>,
Vol. 3, European Physical Society, Geneva, 1984</ref>, was introduced by B. Braams to plasma physics, where its  first application (to the analysis of equilibrium magnetic  
 
measurements on ASDEX) together with a succinct mathematical description, appeared in ref. <ref>B.J. Braams, W. Jilge, and K. Lackner, ''Fast determination of plasma parameters through function parametrization'', Nucl. Fusion '''26''' (1986) 699</ref>.  
was                                              
introduced by B. Braams to plasma physics, where its  first                    
application (to the analysis of equilibrium magnetic                          
measurements on ASDEX) together with an admirably succinct                    
mathematical description, appeared in ref. <ref>B.J. Braams, W. Jilge, and K. Lackner, ''Fast determination of plasma parameters through function parametrization'', Nucl. Fusion '''26''' (1986) 699</ref>.  


The application of the technique requires that a model exists to compute the response of the measurements (''q'') to variations of the system parameters (''p''), i.e. the mapping ''q = M(p)'' is known.
The application of the technique requires that a model exists to compute the response of the measurements (''q'') to variations of the system parameters (''p''), i.e. the mapping ''q = M(p)'' is known.

Revision as of 00:03, 22 March 2010

Function Parametrization (FP) is a technique to provide fast (real-time) construction of system parameters from a set of diverse measurements. [1]

Method

The method of function parameterization (FP) consists of the numerical determination, by statistical regression on a database of simulated states, of simple functional representations of parameters characterizing the state of a particular physical system, where the arguments of the functions are statistically independent combinations of diagnostic raw measurements of

the system whose geometry is fixed.  The technique,  developed by H. Wind for the purpose of momentum determination from spark chamber data

[2] , [3], was introduced by B. Braams to plasma physics, where its first application (to the analysis of equilibrium magnetic measurements on ASDEX) together with a succinct mathematical description, appeared in ref. [4].

The application of the technique requires that a model exists to compute the response of the measurements (q) to variations of the system parameters (p), i.e. the mapping q = M(p) is known. In doing so, all functional dependencies are parametrized (hence the name of the technique), e.g., spatially dependent functions f(r) are given in terms of an parametric expansion (such as a polynomial), and the corresponding parameters are included in the vector p.

The fast reconstruction of the system parameters is obtained by computing the inverse of the mapping M. To do so, the parameters p are varied over a range corresponding to the expected variation in actual experiments, the corresponding q are obtained, and the set of (p,q) data are stored in a database. This database is then subjected to a statistical analysis in order to recover the inverse of M. This analysis is typically a Principal Component Analysis. This procedure is also amenable to a rather detailed error analysis, so that errors in the recovered parameters p for the interpretation of actual data q can be obtained. [5]

Applications

Alternatives

References

  1. B.J. Braams, W. Jilge, and K. Lackner, Fast determination of plasma parameters through function parametrization, Nucl. Fusion 26 (1986) 699
  2. Wind, H., `Function Parametrization' in ``Proceedings of the 1972 CERN Computing and Data Processing School, CERN 72--21, 1972, pp.~53--106.}
  3. Wind, H., (a)`Principal component analysis and its application to track finding', (b) `interpolation and function representation' in ``Formulae and Methods in Experimental Data Evaluation, Vol. 3, European Physical Society, Geneva, 1984
  4. B.J. Braams, W. Jilge, and K. Lackner, Fast determination of plasma parameters through function parametrization, Nucl. Fusion 26 (1986) 699
  5. 5.0 5.1 B.Ph. van Milligen, N.J. Lopes Cardozo, Function Parametrization: a fast inverse mapping method, Comp. Phys. Commun. 66 (1991) 243
  6. B.Ph. van Milligen et al., Application of Function Parametrization to the analysis of polarimetry and interferometry data in TEXTOR, Nucl. Fusion 31 (1991) 309
  7. W. Schneider, P.J. McCarthy, et al., ASDEX upgrade MHD equilibria reconstruction on distributed workstations, Fusion Engineering and Design 48, Issues 1-2 (2000) 127-134
  8. A. Sengupta, P.J. McCarthy, et al., Fast recovery of vacuum magnetic configuration of the W7-X stellarator using function parametrization and artificial neural networks, Nucl. Fusion 44 (2004) 1176