TJ-II:Vacuum system: Difference between revisions

From FusionWiki
Jump to navigation Jump to search
No edit summary
Line 14: Line 14:
<ref>[http://dx.doi.org/10.1016/0042-207X(94)90022-1 F. Tabarés, ''The vacuum system of the TJ-II stellarator'', Vacuum '''45''', Issues 10-11 (1994) 1059-1061]</ref>
<ref>[http://dx.doi.org/10.1016/0042-207X(94)90022-1 F. Tabarés, ''The vacuum system of the TJ-II stellarator'', Vacuum '''45''', Issues 10-11 (1994) 1059-1061]</ref>
<ref>[http://dx.doi.org/10.1109/FUSION.1999.849826 R. Carrasco, '' Hybrid baking system for the vacuum vessel of the Spanish stellarator TJ-II'', Proc. 18<sup>th</sup> Symposium on Fusion Engineering (1999) 231-234]</ref>
<ref>[http://dx.doi.org/10.1109/FUSION.1999.849826 R. Carrasco, '' Hybrid baking system for the vacuum vessel of the Spanish stellarator TJ-II'', Proc. 18<sup>th</sup> Symposium on Fusion Engineering (1999) 231-234]</ref>
== Also see ==
* [[TJ-II:Plasma Wall Interaction]] (vessel wall conditioning)


== References ==
== References ==
<references />
<references />

Revision as of 12:30, 1 October 2009

Vacuum vessel

The all-metal TJ-II vacuum vessel has a helical geometry and has 96 ports. [1] The vacuum vessel is made of non-magnetic steel (304 LN) with a thickness of 10 mm. The CC/HX coil is outside of the vacuum vessel thanks to a helical groove built into the vessel. This groove has a wall thickness of 7 mm for clearance reasons. The groove is protected along the entire toroidal circumference against damage due to the bean-shaped plasma by 3 mm stainless steel sheets for low and medium power operation and graphite tiles for high power operation. Furthermore, the vacuum vessel is protected on the areas where the neutral beams deposit a residual shine-through heat flux.

Vacuum system

The vacuum vessel is pumped through four symmetrically spaced bottom ports to a base pressure of 10-8 mbar. Four identical and independent vacuum pumping subsystems are used. [2] [3] [4]

Also see

References