Scaling law: Difference between revisions

From FusionWiki
Jump to navigation Jump to search
Line 55: Line 55:
=== Size scaling ===
=== Size scaling ===


Expressing the diffusivities in dimensionless form<ref name="ITER" />
It is convenient to express the diffusivities in dimensionless form:
<ref name="ITER" />
:<math>D = c_s \rho_s (\rho^*)^\alpha F(\nu^*,\beta,q, ...)\,</math>
:<math>D = c_s \rho_s (\rho^*)^\alpha F(\nu^*,\beta,q, ...)\,</math>
When &alpha; = 0, the scaling is said to be of the Bohm type, and when &alpha; = 1, of the gyro-Bohm type.
When &alpha; = 0, the scaling is said to be of the Bohm type, and when &alpha; = 1, of the gyro-Bohm type.


The L-mode scaling is of the Bohm type, while the ELMy H-mode scaling is of the gyro-Bohm type.
The L-mode scaling is of the Bohm type, while the ELMy H-mode scaling is of the gyro-Bohm type.
Gyro-Bohm scaling is what one would expect for diffusive transport based on a diffusive scale length proportional to &rho;<sub>i</sub> (the ion gyroradius). Bohm scaling, however, suggests that transport may not be diffusive and may not characterized by a typical scale length.  
Gyro-Bohm scaling is what one would expect for diffusive transport based on a diffusive scale length proportional to &rho;<sub>i</sub> (the ion gyroradius). Bohm scaling, however, suggests that transport may [[Non-diffusive transport|not be diffusive]] and may not characterized by a typical scale length.  
(''More detail needed'')
(''More detail needed'')


== References ==
== References ==
<references />
<references />

Revision as of 20:53, 11 September 2009

A scaling law is an engineering tool to predict the value of a system variable as a function of some other significant variables. [1] Their extended use in magnetic confinement physics reflects the fact that detailed transport calculations or predictions on first principles are difficult in this field. In the latter context, they are mainly used to

  • predict the performance of new (larger) devices, such as ITER
  • summarize large amounts of experimental data
  • make performance comparisons between devices
  • make educated guesses at local transport mechanisms


General method

The typical scaling law expression for a (dependent) variable y as a function of some (independent) system variables x1, x2,... is:

Here, the αi are the scaling parameters. By taking the logarithm of this expression, it becomes linear in the parameters and simple (multivariate) linear regression tools can be used to determine the parameters from a set of data. However, a proper analysis requires:

  • using dimensionless variables (easily achieved by normalizing all quantities appropriately)
  • guaranteeing the (linear) statistical independence of the independent variables (applying, e.g., Principal Component Analysis)

Dimensionless parameters

Assuming quasi-neutrality, the relevant scaling laws can be cast into dimensionless forms that involve only three plasma parameters (apart from geometrical factors): [2] [3]

Here, ρi is the ion Larmor radius and νii the ion-ion collision frequency. Also see beta.

Confinement time scaling

The main performance parameter that is subjected to scaling law analysis is the energy confinement time, τE. The following are some of the most-used scalings for tokamaks: [2]

  • L-mode scaling
  • ELMy H-mode scaling (IPB98(y,2))

For stellarators, a similar scaling has been derived (ISS). [4] [5]

Power degradation

One of the remarkable and initially unexpected properties of magnetically confined plasmas is the reduction of the energy confinement time τE as the heating power P is increased. Typically:

where α has a value of 0.6 ± 0.1. The reason for this behaviour has not been fully clarified. Qualitatively, it seems obvious that an increase of P will lead to an increase of (temperature and density) gradients, and thus an increase of "free energy" available to instabilities and turbulence. These instabilities may grow by feeding on the "free energy", which may lead to an increase of transport, producing the observed confinement degradation. This phenomenon is therefore a form of plasma self-organisation.

Size scaling

It is convenient to express the diffusivities in dimensionless form: [2]

When α = 0, the scaling is said to be of the Bohm type, and when α = 1, of the gyro-Bohm type.

The L-mode scaling is of the Bohm type, while the ELMy H-mode scaling is of the gyro-Bohm type. Gyro-Bohm scaling is what one would expect for diffusive transport based on a diffusive scale length proportional to ρi (the ion gyroradius). Bohm scaling, however, suggests that transport may not be diffusive and may not characterized by a typical scale length. (More detail needed)

References

  1. O.J.W.F. Kardaun, Classical methods of statistics: with applications in fusion-oriented plasma physics, Springer Science & Business (2005) ISBN 3540211152
  2. 2.0 2.1 2.2 ITER Physics Expert Groups et al, ITER Physics Basis, Chapter 1, Nucl. Fusion 39 (1999) 2137 and Ibid., Chapter 2
  3. B.B. Kadomtsev, Sov. J. Plasma Phys. 1 (1975) 295
  4. ISS-IPP and ISS-NIFS homepages
  5. A. Dinklage et al, Physical model assessment of the energy confinement time scaling in stellarators, Nuclear Fusion 47, 9 (2007) 1265-1273