Unipolar arcing: Difference between revisions

no edit summary
(Created page with '{{about|Unipolar arcing}} Unipolar arcing is a phenomenon which may occur in plasma devices between the plasma and the cathode. This cathodic process features localized, bright,…')
 
No edit summary
Line 4: Line 4:


% basic plasma knowledge
% basic plasma knowledge
\subsection{Basics Plasma Physics}
{{Basics Plasma Physics}}
\label{bplasma}
\label{bplasma}
To understand what is going on, let us shortly recap some plasma physics. In a typical plasma device, the plasma is present between cathode and anode, which enables current to flow by motion of mobile charged particles. In the plasma, most of the electric current is carried by electrons because the electron mobility is much higher than that of the ions, due to the lower mass. The critical places of current continuity are the interfaces between plasma and metal. On the anode side, electrons fall into the conduction band, thereby liberating the potential energy known as the work function of the anode (about 4 eV per electron for most metals). On the cathode side, however, electrons are prevented from escaping by a potential barrier, the work function of the cathode.
To understand what is going on, let us shortly recap some plasma physics. In a typical plasma device, the plasma is present between cathode and anode, which enables current to flow by motion of mobile charged particles. In the plasma, most of the electric current is carried by electrons because the electron mobility is much higher than that of the ions, due to the lower mass. The critical places of current continuity are the interfaces between plasma and metal. On the anode side, electrons fall into the conduction band, thereby liberating the potential energy known as the work function of the anode (about 4 eV per electron for most metals). On the cathode side, however, electrons are prevented from escaping by a potential barrier, the work function of the cathode.
Line 23: Line 23:
Collective thermionic, and/or field emission can be stationary. For arc discharges this is, however, not the case: the emission is related to energy dissipation and net heating of the cathode, which can enhance the temperature and associated electron emission, a so-called thermal run-away process. Locations where this occurs can explosively evaporate, leading to a new form of electron emission that is inherently non-stationary because the emission location is changed by the explosion, the plasma expansion and the increase of the hot spot area by thermal conduction. This non-stationary form of emission is called explosive electron emission or arcing.
Collective thermionic, and/or field emission can be stationary. For arc discharges this is, however, not the case: the emission is related to energy dissipation and net heating of the cathode, which can enhance the temperature and associated electron emission, a so-called thermal run-away process. Locations where this occurs can explosively evaporate, leading to a new form of electron emission that is inherently non-stationary because the emission location is changed by the explosion, the plasma expansion and the increase of the hot spot area by thermal conduction. This non-stationary form of emission is called explosive electron emission or arcing.


[[Model of Arcing]]
{{Model of Arcing}}


The electron emission at the cathode spot occurs in the form of discrete explosive electron emission splashes, so-called 'ectons'. These quanta of the explosive process represent the minimum actions required for the explosive events. The duration of one ecton is about $\sim$10 ns, the current $\sim$1 A, and the size of the emission centers is about $\sim1$ $\upmu$m. The explosion leaves a micro crater with a diameter of about $\sim1$ $\upmu$m.
The electron emission at the cathode spot occurs in the form of discrete explosive electron emission splashes, so-called 'ectons'. These quanta of the explosive process represent the minimum actions required for the explosive events. The duration of one ecton is about $\sim$10 ns, the current $\sim$1 A, and the size of the emission centers is about $\sim1$ $\upmu$m. The explosion leaves a micro crater with a diameter of about $\sim1$ $\upmu$m.