TJ-II:Turbulence: Difference between revisions

No edit summary
Line 6: Line 6:
Our work on turbulence has focussed mainly on the analysis of edge Langmuir probe data, although some analysis was done on other types of data (e.g., reflectometry signals). A large effort was devoted to the development of new analysis techniques.
Our work on turbulence has focussed mainly on the analysis of edge Langmuir probe data, although some analysis was done on other types of data (e.g., reflectometry signals). A large effort was devoted to the development of new analysis techniques.


=== Bicoherence and wavelets ===
=== [[Bicoherence]] and wavelets ===


[[File:Bicoherence.png|300px|thumb|right|Auto-bicoherence graph (''E<sub>&theta;</sub>'') during a spontaneous confinement transition at TJ-II, showing the coupling of high to low frequencies (horizontal and diagonal lines), i.e., a possible inverse spectral cascade. (from B.Ph. van Milligen et al, Nucl. Fusion 48 (2008) 115003)]]
[[File:Bicoherence.png|300px|thumb|right|Auto-[[Bicoherence|bicoherence]] graph (''E<sub>&theta;</sub>'') during a spontaneous confinement transition at TJ-II, showing the coupling of high to low frequencies (horizontal and diagonal lines), i.e., a possible inverse spectral cascade. (from B.Ph. van Milligen et al, Nucl. Fusion 48 (2008) 115003)]]
Turbulence is essentially non-linear.
Turbulence is essentially non-linear.
Non-linear interactions can be detected by means of higher-order spectra (e.g. quadratic interactions can be detected through the bi-spectrum). With Fourier analysis, however, in order to achieve statistically significant values for the bi-spectrum, very long time series are necessary. This fact has mostly precluded its use in fields like plasma turbulence, since long steady-state data series are not generally available. In our work, for the first time, the bicoherence was calculated using wavelet transforms, thus making the detection of non-linear interactions with time resolution possible.
Non-linear interactions can be detected by means of higher-order spectra (e.g. quadratic interactions can be detected through the bi-spectrum). With Fourier analysis, however, in order to achieve statistically significant values for the bi-spectrum, very long time series are necessary. This fact has mostly precluded its use in fields like plasma turbulence, since long steady-state data series are not generally available. In our work, for the first time, the bicoherence was calculated using wavelet transforms, thus making the detection of non-linear interactions with time resolution possible.