TJ-II:Observation of suprathermal ions with Neutral Particle Analyzers during electron cyclotron heating in the TJ-II stellarator: Difference between revisions

Line 11: Line 11:
N/A
N/A


== Description of the activity, including motivation/objectives and experience of the proponent (typically one-two pages)==
== Description of the activity, including motivation/objectives ==


Suprathermal ions have been detected using optical spectroscopy techniques in TJ-II <ref> Rapisarda et al. Plasma Phys. Control. Fusion '''49''' 309 (2007). </ref> but without conclusive results when using NPA diagnostics <ref> Fontdecaba et al. Review of Scientific Instruments '''85''' 11E803 (2014). </ref>. One experiment of the 2016 campaign, designed to investigate this population,  consisted in operating one gyrotron along all the discharge while modulating the second gyrotron at 100% of its power <ref> Zurro et al. 44thEPS Conference on Plasma Physics P1.145 (2017).</ref> and changing the power deposition position in a shot-to-shot basis. No neutral beam power was injected. When both gyrotrons were on an indication of suprathermal ions was observed by the NPA diagnostic, see figure 1.
Suprathermal ions have been detected using optical spectroscopy techniques in TJ-II <ref> Rapisarda et al. Plasma Phys. Control. Fusion '''49''' 309 (2007). </ref> but without conclusive results when using NPA diagnostics <ref> Fontdecaba et al. Review of Scientific Instruments '''85''' 11E803 (2014). </ref>. One experiment of the 2016 campaign, designed to investigate this population,  consisted in operating one gyrotron along all the discharge while modulating the second gyrotron at 100% of its power <ref> Zurro et al. 44thEPS Conference on Plasma Physics P1.145 (2017).</ref> and changing the power deposition position in a shot-to-shot basis. No neutral beam power was injected. When both gyrotrons were on an indication of suprathermal ions was observed by the NPA diagnostic, see figure 1.
22

edits