TJ-II:Observation of suprathermal ions with Neutral Particle Analyzers during electron cyclotron heating in the TJ-II stellarator: Difference between revisions

Line 17: Line 17:
In the shot plotted in figure 1 the NPA was tuned to 200 eV in the lowest energy channel. As can be seen, the count rate in the lower energy channels (NPA 01 – NPA 06, 200 eV to 446 eV) dropped, as did the Halpha signal. In contrast, in the higher energy channels (NPA 07 – NPA 09, 540 eV to 826 eV) the count rate fell when the gyrotron was turned off. This can be a indication of the existence of suprathermal ions. The amount of suprathermal ions depends on the position of the plasma heating, so not all discharges presented the same behaviour.
In the shot plotted in figure 1 the NPA was tuned to 200 eV in the lowest energy channel. As can be seen, the count rate in the lower energy channels (NPA 01 – NPA 06, 200 eV to 446 eV) dropped, as did the Halpha signal. In contrast, in the higher energy channels (NPA 07 – NPA 09, 540 eV to 826 eV) the count rate fell when the gyrotron was turned off. This can be a indication of the existence of suprathermal ions. The amount of suprathermal ions depends on the position of the plasma heating, so not all discharges presented the same behaviour.


[[File:NPA42626.png |1000px]]
[[File:NPA42626.png |1000px| Figure 1. Left up: heating scheme. Left down: Halpha and density. Right: NPA signals]]


A possible explanation for the suprathermal ions is a parametric decay of the injected waves <ref> E.Z Gusakov and A. Yu. Popov Plasma Phys. Comtrol. Fusion '''60''' 025001 (2018)</ref>.  In order for this to occur, a hollow profile of the density is necessary, as in TJ-II ECR heated plasmas.  
A possible explanation for the suprathermal ions is a parametric decay of the injected waves <ref> E.Z Gusakov and A. Yu. Popov Plasma Phys. Comtrol. Fusion '''60''' 025001 (2018)</ref>.  In order for this to occur, a hollow profile of the density is necessary, as in TJ-II ECR heated plasmas.  
22

edits