TJ-II:Diagnostic neutral beam: Difference between revisions

Updated reference links
(Updated reference links)
Line 1: Line 1:
[[File:TJ-II DNBI.jpg|500px|thumb|right|Diagram of the TJ-II Diagnostic Neutral Beam Injector ]]
[[File:TJ-II DNBI.jpg|500px|thumb|right|Diagram of the TJ-II Diagnostic Neutral Beam Injector ]]
[[TJ-II]] has a compact diagnostic neutral beam injector, designed for performing spatially resolved charge exchange recombination spectroscopy and neutral particle analysis measurements. It is located in [[TJ-II:Sectors|sector]] A7 and it is currently employed to obtain radial profiles of impurity ion (carbon) temperature and velocity.
[[TJ-II]] has a compact diagnostic neutral beam injector, designed for performing spatially resolved charge exchange recombination spectroscopy and neutral particle analysis measurements. It is located in [[TJ-II:Sectors|sector]] A7 and it is currently employed to obtain radial profiles of impurity ion (carbon) temperature and velocity.
<ref>[http://link.aip.org/link/?RSINAK/75/3499/1 K.J. McCarthy et al, ''Diagnostic neutral beam injector and associated diagnostic systems for the TJ-II stellarator device'', Rev. Sci. Instrum. '''75''', 3499 (2004)]</ref>
<ref>K.J. McCarthy et al, ''Diagnostic neutral beam injector and associated diagnostic systems for the TJ-II stellarator device'', [[doi:10.1063/1.1784512|Rev. Sci. Instrum. '''75''', 3499 (2004)]]</ref>
The injector, an upgraded DINA-5 model, is supported on a mobile cradle that permits its path through the plasma to be varied by &plusmn;3&deg; poloidally. In parallel, a dedicated bidirectional (two vertical opposing views) multichannel spectroscopic diagnostic, incorporating fiber arrays, an f/1.8 spectrograph, and a back-illuminated charge-coupled device, has been installed to obtain Doppler line shifts and widths (around 529.2 nm) with ~1  cm spatial resolution.
The injector, an upgraded DINA-5 model, is supported on a mobile cradle that permits its path through the plasma to be varied by &plusmn;3&deg; poloidally. In parallel, a dedicated bidirectional (two vertical opposing views) multichannel spectroscopic diagnostic, incorporating fiber arrays, an f/1.8 spectrograph, and a back-illuminated charge-coupled device, has been installed to obtain Doppler line shifts and widths (around 529.2 nm) with ~1  cm spatial resolution.
<ref>[http://link.aip.org/link/?RSINAK/77/10F107/1 J.M. Carmona et al, ''Charge-exchange spectroscopic diagnostic for the TJ-II stellarator'', Rev. Sci. Instrum. '''77''', 10F107 (2006)]</ref>
<ref>J.M. Carmona et al, ''Charge-exchange spectroscopic diagnostic for the TJ-II stellarator'', [[doi:10.1063/1.2229200|Rev. Sci. Instrum. '''77''', 10F107 (2006)]]</ref>
<ref>[http://www.new.ans.org/store/j_1911 J.M. Carmona et al, ''Density Dependence of Ion Temperature Measured by Active Charge-Exchange Spectroscopy in ECRH Plasmas of the TJ-II Stellarator'', Fusion Science and Technology '''54''', 4 (2008) 962-969]</ref>
<ref>J.M. Carmona et al, ''Density Dependence of Ion Temperature Measured by Active Charge-Exchange Spectroscopy in ECRH Plasmas of the TJ-II Stellarator'', [http://www.new.ans.org/store/j_1911 Fusion Science and Technology '''54''', 4 (2008) 962-969]</ref>


== See also ==
== See also ==