Magnetic shear: Difference between revisions

Updated reference links
(Updated reference links)
 
(2 intermediate revisions by 2 users not shown)
Line 5: Line 5:
Thus, in 3 dimensions, the shear is a 3 x 3 tensor.
Thus, in 3 dimensions, the shear is a 3 x 3 tensor.


That's way the besstet answer so far!
== Global magnetic shear ==
 
In the context of magnetic confinement, and assuming the existence of toroidally nested magnetic [[Flux surface|flux surfaces]], the only relevant variation of the direction of the magnetic field is the radial gradient of the [[Rotational transform|rotational transform]].
The global magnetic shear is defined as
 
:<math>s = \frac{r}{q} \frac{dq}{dr} = -\frac{r}{\iota} \frac{d\iota}{dr}</math>
 
High values of magnetic shear provide stability, since the radial extension of helically resonant modes is reduced.
Negative shear also provides stability, possibly because convective cells, generated by curvature-driven instabilities, are sheared apart as the field lines twist around the torus.
<ref>T.M. Antonsen, Jr., et al, ''Physical mechanism of enhanced stability from negative shear in tokamaks: Implications for edge transport and the L-H transition'', [[doi:10.1063/1.871928|Phys. Plasmas '''3''', 2221 (1996)]]</ref>


== Local magnetic shear ==
== Local magnetic shear ==


The local magnetic shear is defined as
The local magnetic shear is defined as
<ref>[http://link.aip.org/link/?PHPAEN/8/4375/1 M. Nadeem et al, ''Local magnetic shear and drift waves in stellarators'', Phys. Plasmas '''8''' (2001) 4375]</ref>
<ref>M. Nadeem et al, ''Local magnetic shear and drift waves in stellarators'', [[doi:10.1063/1.1396842|Phys. Plasmas '''8''' (2001) 4375]]</ref>


:<math>s_{\rm local} = 2 \pi \vec{h} \cdot \vec{\nabla} \times \vec{h}</math>
:<math>s_{\rm local} = 2 \pi \vec{h} \cdot \vec{\nabla} \times \vec{h}</math>
Line 23: Line 32:
* [[Connection length]]
* [[Connection length]]


Never seen a btteer post! ICOCBW
== References ==
<references />