Internal inductance: Difference between revisions

no edit summary
No edit summary
No edit summary
 
(14 intermediate revisions by the same user not shown)
Line 5: Line 5:
On the other hand, the energy contained in the magnetic field produced by the loop is
On the other hand, the energy contained in the magnetic field produced by the loop is
:<math>W = \int{\frac{B^2}{2\mu_0} d\vec r}</math>
:<math>W = \int{\frac{B^2}{2\mu_0} d\vec r}</math>
It can be shown that<ref>P.M. Bellan, ''Fundamentals of Plasma Physics'', Cambridge University Press (2006) ISBN 0521821169</ref><ref>[[:Wikipedia:Inductance]]</ref>
It can be shown that<ref>P.M. Bellan, ''Fundamentals of Plasma Physics'', Cambridge University Press (2006) {{ISBN|0521821169}}</ref><ref>[[:Wikipedia:Inductance]]</ref>
:<math>W = \frac12 L I^2</math>
:<math>W = \frac12 L I^2</math>
The internal inductance is defined as the part of the inductance obtained by integrating over the plasma volume ''P'' <ref name="Freidberg">J.P. Freidberg, ''Plasma physics and fusion energy'', Cambridge University Press (2007) ISBN 0521851076</ref>:
 
== Internal inductance of a plasma ==
 
The ''internal'' inductance is defined as the part of the inductance obtained by integrating over the plasma volume ''P'' <ref name="Freidberg">J.P. Freidberg, ''Plasma physics and fusion energy'', Cambridge University Press (2007) {{ISBN|0521851076}}</ref>:
:<math>\frac12 L_i I^2 = \int_P{\frac{B^2}{2\mu_0} d\vec r}</math>
:<math>\frac12 L_i I^2 = \int_P{\frac{B^2}{2\mu_0} d\vec r}</math>
Its complement is the external inductance (''L = L<sub>i</sub> + L<sub>e</sub>'').
Its complement is the external inductance (''L = L<sub>i</sub> + L<sub>e</sub>'').
== Normalized internal inductance ==


In a [[tokamak]], the field produced by the plasma current is the ''poloidal'' magnetic field ''B<sub>&theta;<sub>'', so only this field component enters the definition.
In a [[tokamak]], the field produced by the plasma current is the ''poloidal'' magnetic field ''B<sub>&theta;<sub>'', so only this field component enters the definition.
In this context, it is common to use the ''normalized'' internal inductance<ref>K. Miyamoto, ''Plasma Physics and Controlled Nuclear Fusion'', Springer-Verlag (2005) ISBN 3540242171</ref>
In this context, it is common to use the ''normalized'' internal inductance<ref>K. Miyamoto, ''Plasma Physics and Controlled Nuclear Fusion'', Springer-Verlag (2005) {{ISBN|3540242171}}</ref>
:<math>l_i = \frac{2 \pi \int_P{B_\theta^2(\rho) \rho d\rho}}{\pi a^2 B_\theta^2(a)} </math>
:<math>l_i = \frac{\left \langle B_\theta^2 \right \rangle_P}{B_\theta^2(a)} = \frac{2 \pi \int_0^a{B_\theta^2(\rho) \rho d\rho}}{\pi a^2 B_\theta^2(a)}</math>
(for circular cross section plasmas with [[Toroidal coordinates|minor radius]] ''a'').
(for circular cross section plasmas with [[Toroidal coordinates|minor radius]] ''a''), where angular brackets signify taking a mean value.


Alternatively, sometimes the internal inductance per unit length is used, defined as<ref name="Freidberg"/>
Using Ampère's Law (<math>2 \pi a B_\theta(a) = \mu_0 I</math>), one obtains <ref name="Freidberg"/>
:<math>l_i' = \frac{L_i}{2\pi R_0}\frac{4\pi}{\mu_0} = \frac{2L_i}{\mu_0R_0}</math>
:<math>l_i = \frac{L_i}{2\pi R_0}\frac{4\pi}{\mu_0} = \frac{2L_i}{\mu_0R_0}</math>
where ''R<sub>0</sub>'' is the [[Toroidal coordinates|major radius]], and similar for the external inductance.
where ''R<sub>0</sub>'' is the [[Toroidal coordinates|major radius]], and similar for the external inductance.
This differs from the preceding definition according to <math>l_i' = l_i/(2\pi R_0)</math>.


The value of the normalized internal inductance depends on the current density profile in the toroidal plasma.
The [[ITER]] design uses the following approximate definition:<ref>[[doi:10.1088/0029-5515/48/12/125002|G.L. Jackson, T.A. Casper, T.C. Luce, et al., ''ITER startup studies in the DIII-D tokamak'', Nucl. Fusion '''48''', 12 (2008) 125002]]</ref>
:<math>l_i(3) = \frac{2 V \left \langle B_\theta^2 \right \rangle}{\mu_0^2I^2 R_0}</math>
which is equal to <math>l_i</math> assuming the plasma has a perfect toroidal shape, <math>V = \pi a^2 \cdot 2 \pi R_0</math>.<ref>[[Effective plasma radius]]</ref>
 
== Relation to current profile ==
 
The value of the normalized internal inductance depends on the current density profile in the toroidal plasma (as it produces the <math>B_\theta(\rho)</math> profile): a small value of <math>l_i</math> corresponds to a broad current profile.


== References ==
== References ==
<references />
<references />