ITER: Difference between revisions

138 bytes added ,  19 August 2012
No edit summary
 
(11 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[File:ITER.jpg|400px|thumb|right|ITER design]]
ITER is an international engineering and research project oriented towards demonstrating the technical and scientific viability of [[Nuclear fusion|fusion as an energy source]].
ITER is an international engineering and research project oriented towards demonstrating the technical and scientific viability of [[Nuclear fusion|fusion as an energy source]].
For general background information on the project, refer to the [[:Wikipedia:ITER|Wikipedia]].
For general background information on the project, refer to the [[:Wikipedia:ITER|Wikipedia]].
Line 5: Line 4:
== Main specifications ==
== Main specifications ==


ITER is a magnetic confinement device of the tokamak type.
ITER is a magnetic confinement device of the [[Tokamak|tokamak]] type.
The reference operational scenario is the [[H-mode]] with the following characteristic parameters:
The reference operational scenario is the ELMy [[H-mode]] with the following characteristic parameters:
<ref>[http://dx.doi.org/10.1088/0741-3335/44/5/304 R. Aymar et al, ''The ITER design'', Plasma Phys. Control. Fusion '''44''' (2002) 519-565]</ref>
<ref>[http://dx.doi.org/10.1088/0741-3335/44/5/304 R. Aymar et al, ''The ITER design'', Plasma Phys. Control. Fusion '''44''' (2002) 519-565]</ref>
<ref>[http://dx.doi.org/10.1088/0741-3335/47/5A/003 A.C.C. Sips et al, ''Advanced scenarios for ITER operation'', Plasma Phys. Control. Fusion '''47''' (2005) A19-A40]</ref>
<ref>[http://dx.doi.org/10.1088/0741-3335/47/5A/003 A.C.C. Sips et al, ''Advanced scenarios for ITER operation'', Plasma Phys. Control. Fusion '''47''' (2005) A19-A40]</ref>
[[File:ITER.jpg|400px|thumb|right|ITER design]]


{| class="wikitable"  align="center" border="1"
{| class="wikitable"  align="center" border="1"
Line 25: Line 26:
|Confinement enhancement, H<sub>H98</sub>(y,2) || 1.0  
|Confinement enhancement, H<sub>H98</sub>(y,2) || 1.0  
|-
|-
|Normalised beta, &beta;<sub>N</sub> || 1.8  
|[[Beta|Normalised beta]], &beta;<sub>N</sub> || 1.8  
|-
|-
|Average electron density, &lt;n<sub>e</sub>&gt; (10<sup>19</sup>m<sup>-3</sup>) || 10.1  
|Average electron density, &lt;n<sub>e</sub>&gt; (10<sup>19</sup>m<sup>-3</sup>) || 10.1  
|-
|-
|Fraction of Greenwald limit, &lt;n<sub>e</sub>&gt;/n<sub>GW</sub> || 0.85  
|Fraction of [[Greenwald limit]], &lt;n<sub>e</sub>&gt;/n<sub>GW</sub> || 0.85  
|-
|-
|Average ion temperature, &lt;T<sub>i</sub>&gt; (keV) || 8.0  
|Average ion temperature, &lt;T<sub>i</sub>&gt; (keV) || 8.0  
Line 41: Line 42:
|Fusion power, P<sub>fusion</sub> (MW) || 400  
|Fusion power, P<sub>fusion</sub> (MW) || 400  
|-
|-
|Fusion gain, Q=P<sub>fusion</sub>/(P<sub>NB</sub>+P<sub>RF</sub>) || 10  
|[[:Wikipedia:Fusion_energy_gain_factor|Fusion gain]], Q=P<sub>fusion</sub>/(P<sub>NB</sub>+P<sub>RF</sub>) || 10  
|-
|-
|Non inductive current fraction, I<sub>NI</sub>/I<sub>p</sub> (%) || 28  
|Non inductive current fraction, I<sub>NI</sub>/I<sub>p</sub> (%) || 28  
Line 48: Line 49:
|}
|}


In the standard scenario, part of the plasma current is inductively driven, so that operation is not  steady state. Advanced scenarios seek to maximize pulse length by making use of the [[Bootstrap current|bootstrap current]]. This mag be achieved, e.g., by creating [[Internal Transport Barrier|Internal Transport Barriers]].
In the standard scenario, part of the plasma current is inductively driven, so that operation is not  steady state. Advanced scenarios seek to maximize pulse length by making use of the [[Bootstrap current|bootstrap current]]. This may be achieved, e.g., by creating [[Internal Transport Barrier|Internal Transport Barriers]].


== Challenges ==
== Challenges ==
Line 54: Line 55:
=== Organizational ===
=== Organizational ===


* Multiparty co-ordination
* Multiparty coordination


=== Technical ===
=== Technical ===


* Avoidance and control of MHD disruptions
* Avoidance and control of [[Disruption|disruptions]]
* [[Edge Localized Modes|ELM]] mitigation
* [[Edge Localized Modes|ELM]] mitigation
* Heat load handling in the divertor and on the wall
* Heat load handling in the [[Divertor|divertor]] and on the wall
* Radiation handling and wall materials
* Radiation handling and wall materials
* Diagnostic development


=== Scientific ===
=== Scientific ===
Line 68: Line 68:
* Advanced operational scenarios (cf. [[Internal Transport Barrier]])
* Advanced operational scenarios (cf. [[Internal Transport Barrier]])
* Alpha and energetic particle physics
* Alpha and energetic particle physics
* Diagnostic development


== See also ==
== See also ==
Line 73: Line 74:
* [http://www.iter.org ITER website]
* [http://www.iter.org ITER website]
* [http://www.efda.org/the_iter_project/index.htm EFDA: ITER]
* [http://www.efda.org/the_iter_project/index.htm EFDA: ITER]
* [http://www.iop.org/EJ/toc/0029-5515/39/12 ''ITER Physics Basis'', Nucl. Fusion '''39''', 12 (1999)]
* [http://iopscience.iop.org/0029-5515/39/12 ''ITER Physics Basis'', Nucl. Fusion '''39''', 12 (1999)]


== References ==
== References ==
<references />
<references />
[[Category:Toroidal confinement devices]]