H98: Difference between revisions

1 byte removed ,  11 October 2023
m
mNo edit summary
Line 9: Line 9:
:<math>\tau_E = \frac{W}{P-dW/dt}</math>
:<math>\tau_E = \frac{W}{P-dW/dt}</math>


and <math>I_p</math> is the plasma current, <math>B_T</math> is the toroidal magnetic field at <math>R_{geo}</math>, <math>\langle n_e \rangle</math> is the average density, <math>P_{SOL}</math> is the loss power across the [[Separatrix|LCFS]] into the [[Scrape-Off Layer|SOL]], <math>R_{geo}</math> is the geometric major radius (average of maximum and minimum <math>R</math> of the LCFS) of the plasma, <math>\kappa_a</math> is the elongation, defined unusually in this case as <math>\kappa_a=Area_{CX}/\pi\;a^2</math>, <math>\epsilon=a/R_{geo}</math> is the inverse aspect ratio, <math>M</math> is the ion mass, and <math>a</math> is the minor radius.
and <math>I_p</math> is the plasma current, <math>B_T</math> is the toroidal magnetic field at <math>R_{geo}</math>, <math>\langle n_e \rangle</math> is the average density, <math>P_{SOL}</math> is the loss power across the [[Separatrix|LCFS]] into the [[Scrape-Off Layer|SOL]], <math>R_{geo}</math> is the geometric major radius (average of maximum and minimum <math>R</math> of the LCFS) of the plasma, <math>\kappa_a</math> is the elongation, defined unusually in this case as <math>\kappa_a=Area_{CX}/\pi a^2</math>, <math>\epsilon=a/R_{geo}</math> is the inverse aspect ratio, <math>M</math> is the ion mass, and <math>a</math> is the minor radius.


For a basic, predictable [[H-mode]] scenario, <math>H_{98}\approx1.0</math>. [[L-mode]] will have <math>H_{98}</math> significantly below 1, and some regimes such as [[super H-mode]] can have <math>H_{98}</math> significantly above 1.0.
For a basic, predictable [[H-mode]] scenario, <math>H_{98}\approx1.0</math>. [[L-mode]] will have <math>H_{98}</math> significantly below 1, and some regimes such as [[super H-mode]] can have <math>H_{98}</math> significantly above 1.0.