Flux surface: Difference between revisions

no edit summary
No edit summary
No edit summary
Line 11: Line 11:
This fact lies at the basis of the design of magnetic confinement devices.
This fact lies at the basis of the design of magnetic confinement devices.


Assuming the flux surfaces have this toroidal topology, the function ''f'' defines a set of ''nested'' surfaces, so it makes sense to use this function to label the flux surfaces, i.e., ''f'' may be used as an effective "radial" coordinate. Each toroidal surface ''f'' encloses a volume ''V(f)''.
Assuming the flux surfaces have this toroidal topology, the function ''f'' defines a set of ''nested'' surfaces, so it makes sense to use this function to label the flux surfaces, i.e., ''f'' may be used as a "radial" coordinate. Each toroidal surface ''f'' encloses a volume ''V(f)''.
The surface corresponding to an infinitesimal volume ''V'' is essentially a line that corresponds to  
The surface corresponding to an infinitesimal volume ''V'' is essentially a line that corresponds to  
the ''toroidal axis'' (called ''magnetic axis'' when ''B'' is a magnetic field).
the ''toroidal axis'' (called ''magnetic axis'' when ''B'' is a magnetic field).