Flux coordinates: Difference between revisions

Line 156: Line 156:
==== Useful properties of FSA ====
==== Useful properties of FSA ====
Some useful properties of the FSA are
Some useful properties of the FSA are
*<math> \langle \mathbf{B}\cdot\nabla f \rangle = \langle \nabla\cdot(\mathbf{B} f) \rangle = 0~,\qquad \forall~ \mathrm{single~valued~} f(\mathbf{x}), ~ \mathrm{if}~ \nabla\cdot\mathbf{B} = 0 ~\mathrm{and}~ \nabla \psi\cdot\mathbf{B} = 0 </math>
*<math> \langle\nabla\cdot\Gamma\rangle = \frac{d}{dV}\langle\Gamma\cdot\nabla V\rangle  = \frac{1}{V'}\frac{d}{d\psi}V'\langle\Gamma\cdot\nabla \psi\rangle</math>
*<math> \langle\nabla\cdot\Gamma\rangle = \frac{d}{dV}\langle\Gamma\cdot\nabla V\rangle  = \frac{1}{V'}\frac{d}{d\psi}V'\langle\Gamma\cdot\nabla \psi\rangle</math>


*<math> \langle \mathbf{B}\cdot\nabla f \rangle = \langle \nabla\cdot(\mathbf{B} f) \rangle = 0~,\qquad \forall~ \mathrm{single~valued~} f(\mathbf{x}), ~ \mathrm{if}~ \nabla\cdot\mathbf{B} = 0 ~\mathrm{and}~ \nabla \psi\cdot\mathbf{B} = 0 </math>


The two identities above are the basic simplifying properties of the FSA: The first cancels the contribution of 'conservative forces' like the pressure gradient or electrostatic electric fields. The second reduces the number of spatial variables to only the radial one. Further, it is possible to show that, if <math>\nabla\cdot\Gamma = 0</math> then <math>\langle\Gamma\cdot\nabla V\rangle = 0</math> and not simply constant as the above suggest. This can be seen by simply using Gauss' theorem  
The two identities above are the basic simplifying properties of the FSA: The first cancels the contribution of 'conservative forces' like the pressure gradient or electrostatic electric fields. The second reduces the number of spatial variables to only the radial one. Further, it is possible to show that, if <math>\nabla\cdot\Gamma = 0</math> then <math>\langle\Gamma\cdot\nabla V\rangle = 0</math> and not simply constant as the above suggests. This can be seen by simply using Gauss' theorem  


*<math> \int_{\mathcal{V}}\nabla\cdot\Gamma\; d\mathcal{V} =  \langle\Gamma\cdot\nabla V\rangle \qquad \mathrm{where~} \mathcal{V} \mathrm{~is~the~volume~enclosed~by~a~flux~surface.}
*<math> \int_{\mathcal{V}}\nabla\cdot\Gamma\; d\mathcal{V} =  \langle\Gamma\cdot\nabla V\rangle \qquad \mathrm{where~} \mathcal{V} \mathrm{~is~the~volume~enclosed~by~a~flux~surface.}
</math>
</math>
The FSA relates to the conventional volume integral as
The FSA relates to the conventional volume integral between two surfaces labelled by their volumes <math>V_1</math> and <math>V_2</math> as
*<math> \int_{\mathcal{V}(V_1<V<V_2)} f\; d\mathcal{V} = \int_{V_1}^{V_2} \langle f \rangle\; dV  
*<math> \int_{\mathcal{V}(V_1<V<V_2)} f\; d\mathcal{V} = \int_{V_1}^{V_2} \langle f \rangle\; dV  
</math>
</math>
204

edits