Flux coordinates: Difference between revisions

Line 265: Line 265:
  (\Psi_{pol}'\partial_{\theta_f} + \Psi_{tor}'\partial_{\phi_f}) G = \frac{\sqrt{g_f}}{\sqrt{g_F}} - 1~.
  (\Psi_{pol}'\partial_{\theta_f} + \Psi_{tor}'\partial_{\phi_f}) G = \frac{\sqrt{g_f}}{\sqrt{g_F}} - 1~.
</math>
</math>
which can be turned into an algebraic equation on the fourier components of <math>G</math>
:<math>
  G_{nm} = \frac{-i}{\Psi_{pol}'n + \Psi_{tor}'m}\left(\frac{\sqrt{g_f}}{\sqrt{g_F}}\right)_{nm}~.
</math>
where
:<math>
G(\psi, \theta_f, \phi_f) = \sum_{n,m} G_{nm}(\psi) e^{i(n\theta_f + m\phi_f)}
</math>
and <math>G_{00} = 0 </math>.


Particular choices of G can be made so as to simplify the description of other fields. The most commonly used magnetic coordinate systems are:
Particular choices of G can be made so as to simplify the description of other fields. The most commonly used magnetic coordinate systems are:
204

edits