Boozer coordinates: Difference between revisions

m
 
(One intermediate revision by the same user not shown)
Line 63: Line 63:
\frac{\nabla V\times\mathbf{B}}{B^2} = -\frac{2\pi I_{pol}^d}{\langle B^2\rangle}\mathbf{e}_\theta + \frac{2\pi I_{tor}}{\langle B^2\rangle}\mathbf{e}_\phi~.
\frac{\nabla V\times\mathbf{B}}{B^2} = -\frac{2\pi I_{pol}^d}{\langle B^2\rangle}\mathbf{e}_\theta + \frac{2\pi I_{tor}}{\langle B^2\rangle}\mathbf{e}_\phi~.
</math>
</math>
The above expressions adopt very simple forms for the 'vacuum' field, i.e. one with <math>\nabla\times\mathbf{B} = 0</math>. In this case <math>I_{tor} = 0</math> and <math>\tilde{\eta} = 0</math> leaving, e.g.
:<math>
\mathbf{B} =  \frac{I_{pol}^d}{2\pi}\nabla\phi,\quad (\text{for a vacuum field)}
</math>
In a [[Beta|low-<math>\beta</math>]] stellarator the equilibrium magnetic field is approximatelly given by the vauum value.
204

edits