Boozer coordinates: Difference between revisions

m
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
Boozer coordinates are a set of [[Flux coordinates # Magnetic coordinates|magnetic coordinates]] in which the diamagnetic <math>\nabla\psi\times\mathbf{B}</math> lines are straight besides those of magnetic field <math>\mathbf{B}</math>. The periodic part of the stream function of <math>\mathbf{B}</math> and the scalar magnetic potential are flux functions (that can be chosen to be zero without loss of generality) in this coordinate system.
Boozer coordinates are a set of [[Flux coordinates#Magnetic coordinates|magnetic coordinates]] in which the diamagnetic <math>\nabla\psi\times\mathbf{B}</math> lines are straight besides those of magnetic field <math>\mathbf{B}</math>. The periodic part of the stream function of <math>\mathbf{B}</math> and the scalar magnetic potential are flux functions (that can be chosen to be zero without loss of generality) in this coordinate system.


== Form of the Jacobian for Boozer coordinates ==
== Form of the Jacobian for Boozer coordinates ==
Multiplying the covariant representation of the magnetic field by <math>\mathbf{B}\cdot</math> we get
Multiplying the [[Flux coordinates#Covariant Form|covariant representation]] of the magnetic field by <math>\mathbf{B}\cdot</math> we get
:<math>
:<math>
  B^2 = \mathbf{B}\cdot\nabla\chi = \frac{I_{tor}}{2\pi}\mathbf{B}\cdot\nabla\theta + \frac{I_{pol}^d}{2\pi}\mathbf{B}\cdot\nabla\phi + \mathbf{B}\cdot\nabla\tilde\chi~.
  B^2 = \mathbf{B}\cdot\nabla\chi = \frac{I_{tor}}{2\pi}\mathbf{B}\cdot\nabla\theta + \frac{I_{pol}^d}{2\pi}\mathbf{B}\cdot\nabla\phi + \mathbf{B}\cdot\nabla\tilde\chi~.
</math>
</math>
Now, using the known form of the contravariant components of the magnetic field for a magnetic coordinate system we get
Now, using the known form of the [[Flux coordinates#Magnetic coordinates|contravariant components]] of the magnetic field for a magnetic coordinate system we get
:<math>
:<math>
  \mathbf{B}\cdot\nabla\tilde\chi = B^2  - \frac{1}{4\pi^2\sqrt{g}}\left(I_{tor}\Psi_{pol}' + I_{pol}^d\Psi_{tor}' \right)~,
  \mathbf{B}\cdot\nabla\tilde\chi = B^2  - \frac{1}{4\pi^2\sqrt{g}}\left(I_{tor}\Psi_{pol}' + I_{pol}^d\Psi_{tor}' \right)~,
Line 20: Line 20:
</math>
</math>


== Covariant representation of the magnetic field in Boozer coordinates ==
== Contravariant representation of the magnetic field in Boozer coordinates ==
Using this Jacobian in the general form of the magnetic field in [[Flux coordinates # Magnetic coordinates|magnetic coordinates]] one gets.
Using this Jacobian in the general form of the magnetic field in [[Flux coordinates#Magnetic coordinates|magnetic coordinates]] one gets.
:<math>
:<math>
\mathbf{B} = 2\pi\frac{d\Psi_{pol}}{dV}\frac{B^2}{\langle B^2\rangle}\mathbf{e}_\theta +  
\mathbf{B} = 2\pi\frac{d\Psi_{pol}}{dV}\frac{B^2}{\langle B^2\rangle}\mathbf{e}_\theta +  
Line 35: Line 35:
</math>
</math>


== Contravariant representation of the magnetic field in Boozer coordinates ==
== Covariant representation of the magnetic field in Boozer coordinates ==
The contravariant representation of the field is also relatively simple when using Boozer coordinates, since the angular covariant <math>B</math>-field components are flux functions in these coordinates
The [[Flux_coordinates#Covariant_Form|covariant representation]] of the field is also relatively simple when using Boozer coordinates, since the angular covariant <math>B</math>-field components are flux functions in these coordinates
:<math>
:<math>
\mathbf{B} =  -\tilde\eta\nabla\psi + \frac{I_{tor}}{2\pi}\nabla\theta + \frac{I_{pol}^d}{2\pi}\nabla\phi~.
\mathbf{B} =  -\tilde\eta\nabla\psi + \frac{I_{tor}}{2\pi}\nabla\theta + \frac{I_{pol}^d}{2\pi}\nabla\phi~.
</math>
</math>
The covariant <math>B</math>-field components are then
The covariant <math>B</math>-field components are explicitly
:<math>
:<math>
B_\psi = -\tilde{\eta}
B_\psi = -\tilde{\eta}
Line 63: Line 63:
\frac{\nabla V\times\mathbf{B}}{B^2} = -\frac{2\pi I_{pol}^d}{\langle B^2\rangle}\mathbf{e}_\theta + \frac{2\pi I_{tor}}{\langle B^2\rangle}\mathbf{e}_\phi~.
\frac{\nabla V\times\mathbf{B}}{B^2} = -\frac{2\pi I_{pol}^d}{\langle B^2\rangle}\mathbf{e}_\theta + \frac{2\pi I_{tor}}{\langle B^2\rangle}\mathbf{e}_\phi~.
</math>
</math>
The above expressions adopt very simple forms for the 'vacuum' field, i.e. one with <math>\nabla\times\mathbf{B} = 0</math>. In this case <math>I_{tor} = 0</math> and <math>\tilde{\eta} = 0</math> leaving, e.g.
:<math>
\mathbf{B} =  \frac{I_{pol}^d}{2\pi}\nabla\phi,\quad (\text{for a vacuum field)}
</math>
In a [[Beta|low-<math>\beta</math>]] stellarator the equilibrium magnetic field is approximatelly given by the vauum value.
204

edits