Internal inductance: Difference between revisions

no edit summary
No edit summary
 
Line 5: Line 5:
On the other hand, the energy contained in the magnetic field produced by the loop is
On the other hand, the energy contained in the magnetic field produced by the loop is
:<math>W = \int{\frac{B^2}{2\mu_0} d\vec r}</math>
:<math>W = \int{\frac{B^2}{2\mu_0} d\vec r}</math>
It can be shown that<ref>P.M. Bellan, ''Fundamentals of Plasma Physics'', Cambridge University Press (2006) ISBN 0521821169</ref><ref>[[:Wikipedia:Inductance]]</ref>
It can be shown that<ref>P.M. Bellan, ''Fundamentals of Plasma Physics'', Cambridge University Press (2006) {{ISBN|0521821169}}</ref><ref>[[:Wikipedia:Inductance]]</ref>
:<math>W = \frac12 L I^2</math>
:<math>W = \frac12 L I^2</math>


== Internal inductance of a plasma ==
== Internal inductance of a plasma ==


The ''internal'' inductance is defined as the part of the inductance obtained by integrating over the plasma volume ''P'' <ref name="Freidberg">J.P. Freidberg, ''Plasma physics and fusion energy'', Cambridge University Press (2007) ISBN 0521851076</ref>:
The ''internal'' inductance is defined as the part of the inductance obtained by integrating over the plasma volume ''P'' <ref name="Freidberg">J.P. Freidberg, ''Plasma physics and fusion energy'', Cambridge University Press (2007) {{ISBN|0521851076}}</ref>:
:<math>\frac12 L_i I^2 = \int_P{\frac{B^2}{2\mu_0} d\vec r}</math>
:<math>\frac12 L_i I^2 = \int_P{\frac{B^2}{2\mu_0} d\vec r}</math>
Its complement is the external inductance (''L = L<sub>i</sub> + L<sub>e</sub>'').
Its complement is the external inductance (''L = L<sub>i</sub> + L<sub>e</sub>'').
Line 17: Line 17:


In a [[tokamak]], the field produced by the plasma current is the ''poloidal'' magnetic field ''B<sub>&theta;<sub>'', so only this field component enters the definition.
In a [[tokamak]], the field produced by the plasma current is the ''poloidal'' magnetic field ''B<sub>&theta;<sub>'', so only this field component enters the definition.
In this context, it is common to use the ''normalized'' internal inductance<ref>K. Miyamoto, ''Plasma Physics and Controlled Nuclear Fusion'', Springer-Verlag (2005) ISBN 3540242171</ref>
In this context, it is common to use the ''normalized'' internal inductance<ref>K. Miyamoto, ''Plasma Physics and Controlled Nuclear Fusion'', Springer-Verlag (2005) {{ISBN|3540242171}}</ref>
:<math>l_i = \frac{\left \langle B_\theta^2 \right \rangle_P}{B_\theta^2(a)} = \frac{2 \pi \int_0^a{B_\theta^2(\rho) \rho d\rho}}{\pi a^2 B_\theta^2(a)}</math>
:<math>l_i = \frac{\left \langle B_\theta^2 \right \rangle_P}{B_\theta^2(a)} = \frac{2 \pi \int_0^a{B_\theta^2(\rho) \rho d\rho}}{\pi a^2 B_\theta^2(a)}</math>
(for circular cross section plasmas with [[Toroidal coordinates|minor radius]] ''a''), where angular brackets signify taking a mean value.
(for circular cross section plasmas with [[Toroidal coordinates|minor radius]] ''a''), where angular brackets signify taking a mean value.