Continuous Time Random Walk: Difference between revisions

Line 33: Line 33:
:<math>\frac{\partial n(x,t)}{\partial t} = \int_0^t \left ( \int_{-\infty}^{\infty}{K(x-x',t-t',x',t')n(x',t')dx'} - n(x,t')\int_{-\infty}^{\infty}{K(x-x',t-t',x',t')dx'}\right )dt'</math>
:<math>\frac{\partial n(x,t)}{\partial t} = \int_0^t \left ( \int_{-\infty}^{\infty}{K(x-x',t-t',x',t')n(x',t')dx'} - n(x,t')\int_{-\infty}^{\infty}{K(x-x',t-t',x',t')dx'}\right )dt'</math>


where ''n'' is the particle (probability) density, and ''K'' a kernel that depends on ''p'' and ''&psi;''.
where ''n'' is the particle (probability) density, and ''K'' a kernel of the form
 
:<math>K( \Delta x, \Delta t; x,t) = p(\Delta x; x,t+\Delta t) \phi(\Delta t; x)</math>


== Fractional Differential Equations ==
== Fractional Differential Equations ==