TJ-II:Turbulence: Difference between revisions

no edit summary
(Created page with 'Transport in fusion-grade plasmas is often dominated by turbulent transport. In contrast with Neoclassical transport, turbulent transport (assumed to be the cause of the so-c…')
 
No edit summary
Line 14: Line 14:
=== Self-similarity ===
=== Self-similarity ===


The shape of the autocorrelation function (ACF) of turbulent signals reveals some of the properties of the underlying mechanisms of generation of the turbulence. Unfortunately, the most revealing information is present in the tail of the distribution (i.e. well beyond the correlation time), where statistics are generally poor.
Important transport phenomena such as profile stiffness (consistency), power degradation, and the Bohm scaling of plasma confinement might be explained on the basis of profile self-regulation in the framework of the [[Self-Organised Criticality]] paradigm. This paradigm predicts that transport is regulated by avalanches, which would generate self-similar behaviour in space and time of the turbulent data.  


In particular, the ability to discern between an algebraic or exponential decay of the ACF at large lags would provide an indication whether recently proposed Self-Organized Criticality (SOC) models could be appropriate descriptions of the turbulence. These models predict transport by avalanches, which would generate self-similar behaviour in space and time of the turbulent data and thus lead to the mentioned algebraic decay.
In order to test this hypothesis, one could determine the shape of the autocorrelation function (ACF) of turbulent signals. Unfortunately, the most revealing information is present in the tail of the distribution (i.e., well beyond the correlation time), where statistics are generally poor.


Such possible self-similarity can be quantified by the Rescaled-Range analysis technique and the Hurst exponent. We show that this type of analysis is far more robust against random noise perturbations than the direct determination of the ACF or the Probability of Return.
It is much more convenient to resort to the Rescaled-Range analysis technique and the determination of the Hurst exponent. We have shown that this type of analysis is far more robust with respect to random noise perturbations than the direct determination of the ACF or the Probability of Return.


The analysis of data from Langmuir probes taken at the plasma edge in a wide variety of fusion devices reveals the existence of self-similar behaviour or long-range correlations in all devices studied. The observed variation of the Hurst exponent in the plasma edge, 0.62 < H < 0.75, is small in spite of the variety of devices. On the other hand, the variation of H in the scrape-off layer is much larger. In Wendelstein VII-AS, a slight decrease in H at the sheared flow layer was observed, possibly corresponding to a local decorrelation effect.
The analysis of data from Langmuir probes taken at the plasma edge in a wide variety of fusion devices reveals the existence of self-similar behaviour or long-range correlations in all devices studied. The observed variation of the Hurst exponent in the plasma edge, 0.62 < H < 0.75, is small in spite of the variety of devices. On the other hand, the variation of H in the scrape-off layer is much larger. In Wendelstein VII-AS, a slight decrease in H at the sheared flow layer was observed, possibly corresponding to a local decorrelation effect.


The repeated occurrence of values of H differing significantly from the value corresponding to random noise (H = 0.5) in all machines points to a universal aspect of the underlying turbulence. Further, the degree of self-similarity detected implies the existence of long-range correlations (with respect to the correlation time). This may either be due to a response of the system to perturbations that is much slower than the turbulence autocorrelation time, or to long-range correlations generated by some mechanism, for which the avalanches of SOC models are a good candidate
The repeated occurrence of values of H differing significantly from the value corresponding to random noise (H = 0.5) in all machines points to a universal aspect of the underlying turbulence. Further, the degree of self-similarity detected implies the existence of long-range correlations (with respect to the correlation time).
 


== References ==
== References ==
<references />
<references />