TJ-II:Radiation asymmetries and potential variations: Difference between revisions

Line 49: Line 49:
*Accessing different absolute values and regimes <math>E_{r}</math> is essential. These regimes can be roughly referred to as "high ion root <math>E_{r}</math>", "low ion root <math>E_{r}</math>" and the same for electron root conditions. 2 discharges for each regime is necessitated in order to characterize <math>E_{r}</math> at different positions over the same flux surface.
*Accessing different absolute values and regimes <math>E_{r}</math> is essential. These regimes can be roughly referred to as "high ion root <math>E_{r}</math>", "low ion root <math>E_{r}</math>" and the same for electron root conditions. 2 discharges for each regime is necessitated in order to characterize <math>E_{r}</math> at different positions over the same flux surface.
*Reproducing some of these regimes in two different configurations (high-iota and standard), where changes in the the sign of <math>E_{r}^{Left}-E_{r}^{Right}</math> have been observed, is planned.
*Reproducing some of these regimes in two different configurations (high-iota and standard), where changes in the the sign of <math>E_{r}^{Left}-E_{r}^{Right}</math> have been observed, is planned.
*Good stationarity of plasma parameters at the instant where the impurities are injected is required in order to extract the stationary background emissivity from that produced by the injected impurity. Hence the study shall preferably be perform in ECRH plasmas.
*Good stationarity of plasma parameters at the instant where the impurities are injected is required in order to extract the stationary background emissivity from that produced by the injected impurity.
 




124

edits