Boozer coordinates: Difference between revisions

m
Line 2: Line 2:


== Form of the Jacobian for Boozer coordinates ==
== Form of the Jacobian for Boozer coordinates ==
Multiplying the covariant representation of the magnetic field by <math>\mathbf{B}\cdot</math> we get
Multiplying the [[Flux coordinates#Covariant Form|covariant representation]] of the magnetic field by <math>\mathbf{B}\cdot</math> we get
:<math>
:<math>
  B^2 = \mathbf{B}\cdot\nabla\chi = \frac{I_{tor}}{2\pi}\mathbf{B}\cdot\nabla\theta + \frac{I_{pol}^d}{2\pi}\mathbf{B}\cdot\nabla\phi + \mathbf{B}\cdot\nabla\tilde\chi~.
  B^2 = \mathbf{B}\cdot\nabla\chi = \frac{I_{tor}}{2\pi}\mathbf{B}\cdot\nabla\theta + \frac{I_{pol}^d}{2\pi}\mathbf{B}\cdot\nabla\phi + \mathbf{B}\cdot\nabla\tilde\chi~.
</math>
</math>
Now, using the known form of the contravariant components of the magnetic field for a magnetic coordinate system we get
Now, using the known form of the [[Flux coordinates#Magnetic coordinates|contravariant components]] of the magnetic field for a magnetic coordinate system we get
:<math>
:<math>
  \mathbf{B}\cdot\nabla\tilde\chi = B^2  - \frac{1}{4\pi^2\sqrt{g}}\left(I_{tor}\Psi_{pol}' + I_{pol}^d\Psi_{tor}' \right)~,
  \mathbf{B}\cdot\nabla\tilde\chi = B^2  - \frac{1}{4\pi^2\sqrt{g}}\left(I_{tor}\Psi_{pol}' + I_{pol}^d\Psi_{tor}' \right)~,
204

edits